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PREFACE

A digital system is a system that processes discrete elements of informa-
tion. The best known example of a digital system is the general purpose
digital computer. Logic design is concerned with the interconnections between
digital components and modules and is a term used to denote the design of
digital systems.

The purpose of this book is to present the basic concepts used in the
design and analysis of digital systems and to introduce the principles of digital
computer organization. The viewpoint of the book is primarily tutorial. It
provides various methods and techniques from which the reader hopefully will
develop a design philosophy applicable to any digital system problem.

Electronic circuits used in digital systems are invariably manufactured in
integrated circuit form. Many integrated circuit packages available commer-
cially contain a large amount of interconnected components within a single
silicon chip and provide a specific and complete digital function. It is very
important that the logic designer be familiar with the various digital functions
commonly encountered in integrated circuit packages. For this reason, many
such circuits are introduced throughout the book and their logical function
fully explained.

Logic design and switching circuit theory are two interrelated branches of
study and the two names are interchangeable when simple digital systems are
considered. Both logic design and switching circuit theory are concerned with
the analysis and synthesis of combinational and sequential circuits. Complex
digital systems, however, have two different widely used interpretations. From
the switching circuit theory point of view, a digital system is described by a
state system which is a direct extention of the definition given to a sequential
circuit. This point of view asserts that, at any instant of time, a digital system

xi



xii PREFACE

is capable of being in one of many possible abstract states. The behavior of
the system is then specified by a transition function that determines the next
state from the current state and the inputs. A large system such as a digital
computer may be represented, in principle, as a state system, but the number
of states is far too large to make this representation practical. When dealing
with the logic design of complex digital systems, it is convenient to formulate
and define the system by means of register transfers. The components in this
representation are computer registers and modules together with a set of
functional transfers between registers. With this representation, the digital
system is decomposed into register subunits and specified by the operations
executed in each register. Chapter 1 to 7 of this book contain a practical
approach to the subject which is sometimes classified under the heading of
basic switching circuits. What makes this book different from a switching
circuit theory book is the subject matter covered in Chapters 8 through 12
where the register transfer concept is developed and used to describe and
design digital systems.

Chapter 1 introduces various binary systems such as binary numbers, binary
codes, binary storage and binary logic. Chapter 2 covers Boolean algebra and
Chapter 3 presents the map and tabulation methods for simplifying Boolean
functions. The first three chapters serve as background information and
contain basic material needed for the rest of the book.

Chapter 4 presents design and analysis procedures for combinational
circuits. Various functions that are available in integrated circuit packages such
as adders, comparators, decoders and multiplexers are introduced as design or
analysis examples. Chapter 5 starts with a discussion of integrated circuits and
their impact on logic design. The chapter continues with a presentation of
techniques for NOR and NAND logic implementation and of various other
gate implementations.

Chapter 6 on sequential logic starts by presenting the properties of various
types of flip-flops such as RS, JK, T and D. The tools for analysing clocked
sequential circuits; the state diagram, state table and state equations, are then
presented. The logic diagrams of some common clocked sequential circuits
such as binary and decimal counters, and registers are shown and their
function explained. The examples given in this analysis chapter are chosen
from those that have specific functions and, because of their widespread use,
are commonly available in integrated circuit packages.

Chapter 7 introduces procedures for the design of clocked sequential
circuits. The topics of state reduction and state assignment are mentioned
briefly without bringing any manipulative methods. The emphasis in this
chapter is on the methods by which the Boolean functions to the inputs of
flip-flops are derived from the state table and simplified by means of maps.
Numerous examples are given including the design of counters.
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Chapter 8 introduces a symbolic notation for register transfer operations.
The memory unit is explained in terms of transfers among a collection of
storage registers and the types of data represented in registers is discussed. The
first half of Chapter 9 introduces methods for binary addition. The design of a
general purpose accumulator register is then undertaken, starting with a
specified set of elementary operations and culminating in a logic diagram. A
discussion of various accumulator operations is then presented to emphasize
the concept of a general purpose register and its place in large-scale integration
design.

Chapter 10 on computer organization presents a description of the most
common type of digital system, i.e., the stored program digital computer. The
implementation of a simple general purpose computer is explained in terms of
register transfer operations. The rest of the chapter discusses many important
concepts found in general purpose computers.

A simple digital computer is designed in Chapter 11 starting from a
specified set of machine instructions and hardware registers and culminating in
a list of Boolean functions that specify the interconnections between the
various digital components. The system description is formalized by register
transfer symbology and a procedure is mechanized for translating the register
transfer relations into Boolean functions that represent the combinational
networks among the registers. Chapter 12 contains examples that demonstrate
the design of control logic and the development of algorithms for the
implementation of digital functions.

In summary, the book covers the following main topics. Chapter 1 gives an
introduction to binary systems. Chapters 2-5 are concerned with combina-
tional circuits. Chapters 6-7 deal with synchronous clocked sequential circuits.
Chapters 8-9 introduce the concept of registers, their function and design.
Chapters 10-11 cover the organization and design of general purpose digital
computers and Chapter 12 is a summary of the various design techniques
introduced throughout the book. Answers to most of the problems appear in
the back of the book to provide an aid for the student and to help the
independent reader. A solutions manual is available for the instructor from the
publisher.

The book is suitable for a two-term course in computer logic design
introducing the methods and techniques of analysis and design of digital
systems. It can be used in an Electrical Engineering or in a Computer Science
curriculum. The book is also suitable for self study by engineers or computer
scientists who need to acquire a knowledge of logic design.

The book can also be used in a one-term course in a variety of ways.
(1) As a first course in logic design or switching circuits covering Chapters 1
through 8. (2) As a course in computer organization and design with pre-
requisite of a course in basic switching circuit theory by covering Chapters 8



Xxiv PREFACE

through 12 with a review of Chapters 6 and 7. (3) As a course in com-
puter organization in a Computer Science Department by covering Chapters 1
through 10 and omitting some of the design sections in Chapters 4, 5, 7
and 9. In fact, this book covers about 80% of the material of the com-
puter organization course number I3 recommended by the report “ACM
Curriculum 68” published in the March 1968 issue of the Communications
of the ACM.

I wish to express my thanks to Dean Eugene Kopp for his encouragement.
Thanks also to Mrs. Ernestine Wellenstein and Mrs. Pat Anderson for typing
parts of the manuscript. My greatest thanks go to my wife Sandra for editing
the entire manuscript, for typing most of it and for her encouragement and
support of the entire project.

M. MORRIS MANO




BINARY
1 SYSTEMS

1-1 DIGITAL COMPUTERS AND DIGITAL SYSTEMS

Digital computers have made possible many scientific, industrial, and
commercial advances that would have been unattainable otherwise. Our
space program would have been impossible without real time, continuous
computer monitoring, and many business enterprises function -efficiently
only with the aid of automatic data processing. Computers are used in
scientific calculations, commercial and business data processing, air traffic
control, space guidance, the educational field, and many other areas. The
most striking property of a digital computer is its generality. It can follow
a sequence of instructions, called a program, that operates on given data.
The user can specify and change programs and/or data according to the
specific need. As a result of this flexibility, general purpose digital com-
puters can perform a wide variety of information processing tasks.

The general purpose digital computer is the best known example of a
digital system. Other examples include: telephone switching exchanges,
digital voltmeters, frequency counters, calculating machines, and teletype
machines. Characteristic of a digital system is its manipulation of discrete
elements of information. Such discrete elements may be electric impulses,
the decimal digits, the letters of an alphabet, arithmetic operations, punctua-
tion marks, or any other set of meaningful symbols. The juxtaposition of
discrete elements of information represents a quantity of information. For
example, the letters d, o, and g form the word dog. The digits 237 form a
number. Thus, a sequence of discrete elements forms a language; that is, a

1



2 BINARY SYSTEMS Chap. 1

discipline that conveys information. Early digital computers were used
mostly for numerical computations. In this case the discrete elements used
are the digits. From this application, the term digital computer has emerged.
A more appropriate name for a digital computer would be a “discrete
information processing system.”

Discrete elements of information are represented in a digital system by
physical quantities called signals. Electrical signals such as voltages and
currents are the most common. The signals in all present-day electronic
digital systems have only two discrete values and are said to be binary. The
digital system designer is restricted to the use of binary signals because of
the lower reliability of many-valued electronic circuits. In other words, a
circuit with ten states, using one discrete voltage value for each state, can
be designed, but it would possess a very low reliability of operation. In
contrast, a transistor circuit that is either on or off has two possible signal
values and can be constructed to be extremely reliable. Because of this
physical restriction of components, and because human logic tends to be
binary, digital systems that are constrained to take discrete values are
further constrained to take binary values.

Discrete quantities of information emerge either from the nature of the
process or may be purposely quantized from a continuous process. For
example, a payroll schedule is an inherently discrete process that contains
employee names, social security numbers, weekly salaries, income taxes, etc.
An employee’s paycheck is processed using discrete data values such as
letters of the alphabet (names), digits (salary), and special symbols such
as $. On the other hand, a research scientist may observe a continuous
process but record only specific quantities in tabular form. The scientist is
thus quantizing his continuous data. Each number in his table is a discrete
element of information.

Many physical systems can be described mathematically by differential
equations whose solutions as a function of time give the complete mathe-
matical behavior of the process. An analog computer performs a direct
simulation of a physical system. Each section of the computer is the analog
of some particular portion of the process under study. The variables in the
analog computer are represented by continuous signals, usually electric
voltages that vary with time. The signal variables are considered analogous
to those of the process and behave in the same manner. Thus measurements
of the analog voltage can be substituted for variables of the process. The
term analog signal is sometimes substituted for continuous signal because
“analog computer” has come to mean a computer that manipulates continu-
ous variables.

To simulate a physical process in a digital computer, the quantities must
be quantized. When the variables of the process are presented by real time
continuous signals, the latter are quantized by an analog to digital conver-
sion device. A physical system whose behavior is described by mathematical
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equations is simulated in a digital computer by means of numerical
methods. When the problem to be processed is inherently discrete, as in
commercial applications, the digital computer manipulates the variables in
their natural form.

Both analog and digital computers have their advantages. Analog
computers are used when problems require fast solutions with limited
accuracy or when large numbers of repetitive calculations are required with
variations of parameters. A digital computer is used when the data are in
discrete form; when high accuracy, logical decision, and control capabilities
are required; and when a general purpose machine is advantageous. A hybrid
computer is an interconnection of both an analog and a digital computer.
This combination possesses the advantages of both computers and is very
useful for simulation studies of physical systems.

A block diagram of a small digital computer is shown in Fig. 1-1. The
memory unit stores programs as well as input, output, and intermediate
data. The arithmetic unit performs the required processing tasks on data
obtained from the memory unit. The control unit supervises the flow of
information between the various units. The input and output devices accept
programs and data (either prepared by the user or generated by the
computer) and transfer them to and from the memory unit. The input and
output devices are special purpose digital systems driven by an electro-
mechanical mechanism and controlled by electronic digital circuits. Since
they are special purpose machines, they will not be covered in this book.
The operational characteristics of a memory unit are explained in Sec. 8-3.
The organization of a small digital computer, viewed especially from the

Processor
or
Arithmetic Unit

Control
Unit
Storage
or
Memory Unit
Input Output
Devices Devices
and and
Control Control

Figure 1-1 Block diagram of a small digital computer
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.operation of the processor and control units, is presented in some detail in
Ch. 10. The processor, memory, and control units of a large digital
computer are essentially the same as those shown in Fig. 1-1. On the other
hand, a large computer has a wide range of input and output equipment
and uses special processors to control the information flow between the
memory unit and external devices. Such a computer is introduced and
discussed in more detail in Sec. 10-3.

It has already been mentioned that a digital computer manipulates
discrete elements of information and that these elements are represented in
the binary form. Operands used for calculations may be expressed in the
binary number system. Other discrete elements, including the decimal digits,
are represented in binary codes. Data processing is carried out by means of
binary logic elements using binary signals. Quantities are stored in binary
storage elements. The purpose of this chapter is to introduce the various
binary concepts as a frame of reference for further detailed study in the
succeeding chapters.

12 BINARY NUMBERS

A decimal number such as 7392 represents a quantity equal to 7 thousands
plus 3 hundreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are
powers of 10 implied by the position of the coefficients. To be more exact,
7392 should be written as

7% 10° +3 X 102 +9 X 10" + 2 X 10°

However, the convention is to write only the coefficients and from their
position deduce the necessary powers of 10. In general, a number with a
decimal point is represented by a series of coefficients as follows:

AsAa03a0,01400 . d.14_204._3

The a; coefficients are one of the 10 digits (0,1,2,...,9), and the
subscript value j gives the place value and hence, the power of 10 by which

the coefficient must be multiplied:

10%as + 10%a,; + 10%a; + 10%a, + 10'a; + 10%, + 10™'a_,
+ 10_20__2 + 10-30_,3

The decimal number system is said to be of base, or radix, 10 because it
uses 10 digits and the coefficients are multiplied by powers of 10. The
binary system is a different number system. The coefficients of the binary
number system have two possible values: O and 1. Each coefficient g; is
multiplied by 2 j. For example, the decimal equivalent of the binary number
11010.11 is 26.75, as shown from the multiplication of the coefficients by
powers of 2:
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IX 2 +1X2+0X22+1X2'+0X2°+1x2!
+1X 272 =12675

In general, a number expressed in base 7 system has coefficients multiplied by
powers of 7:

@y st A, 4 tay 1 ey Tt

taqrtta, i ta, -rm

The coefficients a; range in value from 0 to r — 1. To distinguish between
numbers of different bases, we enclose the coefficients in parentheses and
write a subscript equal to the base used (except sometimes for decimal
numbers where the content makes it obvious that it is decimal). An
example of a base 5 number is:

(4021.2)s =4 X 53 +0 X 52 +2 X 51 +1 X 5% + 2 X5~ =(511.4),0

Note that coefficient values for base 5 can be only 0, 1, 2, 3, and 4.

It is customary to borrow the needed r digits for the coefficients from
the decimal system when the base of the number is less than 10. The letters
of the alphabet are used to supplement the 10 decimal digits when the base
of the number is greater than 10. For example, in the hexadecimal (base
16) number system, the first 10 digits are borrowed from the decimal
system. The letters A, B, C, D, E, and F are used for digits 10, 11, 12, 13,
14, and 15, respectively. An example of a hexadecimal number is:

(B65F)16 = 11 X 16® + 6 X 16* + 5 X 16 + 15 = (56687),4

The first 16 numbers in the decimal, binary, octal, and hexadecimal systems
are listed in Table 1-1.

Table 1-1 Numbers With Different Bases

Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
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Arithmetic operations with numbers in base r follow the same rules as
for decimal numbers. When other than the familiar base 10 is used, one
must be careful to use only the r allowable digits. Examples of addition,
subtraction, and muitiplication of two binary numbers are shown below:

augend: 101101 + minuend: 101101 multiplicand: 1011

addend: 100111 = subtrahend: 100111 multiplier: 101 X
sum: 1010100  difference: 000110 1011
0000
1011
product: 110111

The sum of two binary numbers is calculated by the same rules as in
decimals, except that the digits of the sum in any significant position can
be only O or 1. Any “carry” obtained in a given significant position is used
by the pair of digits one significant position higher. The subtraction is
slightly more complicated. The rules are still the same as in decimal except
that the “borrow” in a given significant position adds 2 to a minuend digit.
(A borrow in the decimal system adds 10 to a minuend digit.) Multiplica-
tion is very simple. The multiplier digits are always 1 or 0. Therefore, the
partial products are equal either to the multiplicand or to 0.

1-3 NUMBER BASE CONVERSIONS

A binary number can be converted to decimal by forming the sum of the
powers of 2 of those coefficients whose value is 1. For example:

(1010.011), = 23 + 2! + 272 + 27 = (10.375) 10

The binary number has four 1’s and the decimal equivalent is found from
the sum of four powers of 2. Similarly, a number expressed in base r can be
converted to its decimal equivalent by multiplying each coefficient with the
corresponding power of r and adding. The following is an example of octal
to decimal conversion:

(630.4)s = 6 X 82 +3 X 8+ 4 X 8 = (408.5),,

The conversion from decimal to binary or to any other base r system is
more convenient if the number is separated into an integer part and a
fraction part and the conversion of each part done separately. The
conversion of an integer from decimal to binary is best explained by
example.

EXAMPLE 1-1. Convert decimal 41 to binary. First, 41 is divided by 2
to give an integer quotient of 20 and a remainder of 1/2. The quotient is
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again divided by 2 to give a new quotient and remainder. This process is
continued until the integer quotient becomes 0. The coefficients of the
desired binary number are obtained from the remainders as follows:

integer
quotient remainder coefficient
ﬂ = 20 + —1- ap =1
2 2
20 10 + 0 a =0
2
10
- = 5 + 0 ay =0
) 2
5 1
= = + - =1
2 2 2 3
2
E = 1 + 0 a, =0
1 1
- = + -_— =
3 0 2 as =1

ANSWER: (4 1)1 0o = (asa4a3a2a1ao)2 = (101 001)2
The arithmetic process can be manipulated more conveniently as follows:

integer remainder

41
L 101001 = answer

20
10
S
2
1
0
The conversion from decimal integers to any base r system is similar to
the above example except that division is done by r instead of 2.
EXAMPLE 1-2. Convert decimal 153 to octal. The required base r is 8.
First, 153 is divided by 8 to give an integer quotient of 19 and a
remainder of 1. Then 19 is divided by 8 to give an integer quotient of 2
and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of O and
a remainder of 2. This process can be conveniently manipulated as follows:

-0 OO

153
19 1

2 3 [
0 2 = (231)g

The conversion of a decimal fraction to binary is accomplished by a
method similar to that used for integers. However, multiplication is used
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instead of division, and integers are accumulated instead of remainders.
Again the method is best explained by example.

EXAMPLE 1-3. Convert (0.6875);0 to binary. First, 0.6875 is
multiplied by 2 to give an integer and a fraction. The new fraction is
multiplied by 2 to give a new integer and a new fraction. This process is
continued until the fraction becomes O or until the number of digits have
sufficient accuracy. The coefficients of the binary number are obtained
from the integers as follows:

integer fraction coefficient
0.6875 X 2 = 1 +  0.3750 a1 =1
0.3750 X 2 = 0 +  0.7500 a.s =0
0.7500 X 2 = 1 +  0.5000 a3 =1
0.5000 X 2 = 1 +  0.0000 a.4 =1

ANSWER: (0.6875)10 = (0.0-10_261.-30-4)2 = (0.1011)2

In converting a decimal fraction to a number expressed in base r, the
procedure is similar. Multiplication is by r instead of 2, and the coefficients
found from the integers may range in value from O to r — 1 instead of O
and 1.

EXAMPLE 1-4. Convert (0.513),, to octal.
0.513 X 8 = 4.104
0.104 X 8 = 0.832
0.832 X 8 = 6.656
0.656 X 8 = 5.248
0.248 X 8 = 1.984

0.984 X 8 = 7.872
The answer, to seven significant figures, is obtained from the integer part of
the products:

(0.513)10 = (0.406517 .. .)s

The conversion of decimal numbers with both integer and fraction parts
is done by converting the integer and fraction separately and then
combining the two answers together. Using the results of Exs. 1-1 and 1-3
we obtain:

(41.6875);0 = (101001.1011),
From Exs. 1-2 and 14, we have:
(153.513);9 = (231.406517)s




Sec. 1-4 OCTAL AND HEXADECIMAL NUMBERS 9

14 OCTAL AND HEXADECIMAL NUMBERS

The conversion from and to binary, octal, and hexadecimal plays an impor-
tant part in digital computers. Since 2° = 8 and 2* = 16, each octal digit
corresponds to three binary digits and each hexadecimal digit corresponds to
four binary digits. The conversion from binary to octal is easily accom-
plished by partitioning the binary number into groups of three digits, each
starting from the binary point and proceeding to the left and to the right.
The corresponding octal digit is then assigned to each group. The following
example illustrates the procedure:

(,10,110,001,101,011, - 111,100,000, 110,), = (26153.7406)s

1
2 6 1 5 3 7 4 0 6

Conversion from binary to hexadecimal is similar except that the binary
number is divided into groups of four digits:

(10,1100,0110 1011, + 1111 0010,), = (2C6B.F2);6
2 ¢ 6 B F 2

The corresponding hexadecimal (or octal) digit for each group of binary
digits is easily remembered after studying the values listed in Table 1-1.
Conversion from octal or hexadecimal to binary is done by a
procedure reverse to the above. Each octal digit is converted to its three-
digit binary equivalent. Similarly, each hexadecimal digit is converted to its
four-digit binary equivalent. This is illustrated in the following examples:

(673.124)g = (110,111,011, + 001 010 100 ),

6 7 3 1 2 4
(306. D), = (0011, 0000 0110 + 1101,),
3 0 6 D

Binary numbers are difficult to work with because they require three or
four times as many digits as their decimal equivalent. For example, the
binary number 111111111111 is equivalent to decimal 4095. However,
digital computers use binary numbers and it is sometimes necessary for the
human operator or user to communicate directly with the machine by
means of binary numbers. One scheme that retains the binary system in the
computer but reduces the number of digits the human must consider
utilizes the relationship between the binary number system and the octal or
hexadecimal systems. By this method, the human thinks in terms of octal
or hexadecimal numbers and performs the required conversion by inspection
when direct communication with the machine is necessary. Thus the binary
number 111111111111 has 12 digits and is expressed in octal as 7777 (four
digits) or in hexadecimal as FFF (three digits). During communication
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between people (about binary numbers in the computer), the octal or
hexadecimal representation is more desirable because it can be expressed
more compactly with 1/3 or 1/4 the number of digits required for the
equivalent binary number. When the human communicates with the machine
(through console switches or indicator lights or by means of programs
written in machine language), the conversion from octal or hexadecimal to
binary and vice versa is done by inspection by the human user.

15 COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction
operation and for logical manipulations. There are two types of comple-
ments for each base r system: (a) the r’s complement and (b) the (r — 1)’s
complement. When the value of the base is substituted, the two types
receive the names: 2’s and 1’s complement for binary numbers, or 10’s and
9’s complement for decimal numbers.

The s Complement

Given a positive number N in base r with an integer part of n digits. The
r’s complement of N is defined to be: r” — N for N # 0, and 0 for
N = 0. The following numerical example will help clarify the definition.

The 10’s complement of (52520);, is 10° — 52520 = 47480.

The number of digits in the number is n = 5.

The 10’s complement of (0.3267),, is 1 — 0.3267 = 0.6733.

No integer part, so 10" = 10° = 1.

The 10’s complement of (25.639),, is 102 — 25.639 = 74.361.

The 2’s complement of (101100), is (2°);0 — (101100), = (1000000 —
101100), = 010100.

The 2’s complement of (0.0110), is (1 — 0.0110), = 0.1010.

From the definition and the examples it is clear that the 10’s comple-
ment of a decimal number can be formed by leaving all least significant
zeros unchanged, subtracting the first nonzero least significant digit from
10, and then subtracting all other higher significant digits from 9. The
2’s complement can be formed by leaving all least significant zeros and
the first nonzero digit unchanged, and then replacing 1’s by 0’s and 0’s
by 1’s in all other higher significant digits. A third simpler method for
obtaining the »’s complement is given after.the definition of the (r — 1)’s
complement.
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From the definition and the examples it is clear that the 10’s comple-
ment of a decimal number can -be formed by leaving all least significant
zeros unchanged, subtracting the first nonzero least significant digit from
10, and then subtracting all other higher significant digits from 9. The 2’s
domplement can be formed by leaving all least significant zeros-and the first
nonzero digit unchanged, and then replacing 1’s by 0’s and 0’s by 1’s in all
other higher significant digits. A third simpler method for obtaining the r’s
complement is given after the definition of the (r — 1)’s complement.

The (r — 1)'s Complement

Given a positive number N in base r with an integer part of n digits and
a fraction part of m digits. The (r — 1)’s complement of N is defined to be:
r* — r™m — N. Some numerical examples follow:

The 9’s complement of (52520),, is (10° — 1 — 52520) = 99999
— 52520 = 47479.

No fraction part, so 10™ = 10° = 1.

The 9’s complement of (0.3267),0 is (1 — 107 — 0.3267) = 0.9999
— 0.3267 = 0.6732.

No integer part, so 107 = 10° = 1.

The 9’s complement of (25.639),0 is (10> — 1073 — 25.639) = 99.999
— 25.639 = 74.360.

The 1’s complement of (101100), is (2° — 1) — (101100) = (111111
— 101100), = 010011.

The 1's complement of (0.0110); is (I — 27%),, — (0.0110),
= (0.1111 — 0.0110), = 0.1001.

From the examples, we see that the 9°s complement of a decimal
number is formed simply by subtracting every digit from 9. The 1’s
complement of a binary number is even simpler to form: the 1’s are
changed into 0’s and the 0’s into 1’s. Since the (r — 1)’s complement is
very easily obtained, it is sometimes convenient to use it when the r’s
complement is desired. From the definitions, and from a comparison of the
results obtained in the examples, it follows that the #’s complement can be
obtained from the (r — 1)’s complement after the addition of r-™ to the
least significant digit. For example, the 2’s complement of 10110100 is
obtained from the 1’s complement 01001011 by adding 1 to give
01001100.

It is worth mentioning that the complement of the complement restores
the number to its original value. The 2’s complement of N is 7" — N and
the complement of (r” — N) isr” — (#” — N) = N; and similarly for the
I’s complement.
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Subtraction with r's Complement

The direct method of subtraction taught in elementary schools uses the
borrow concept. By this method, we borrow a 1 from a higher significant
position when the minuend digit is smaller than the corresponding sub-
trahend digit. This seems to be easiest when people perform subtraction
with paper and pencil. When subtraction is implemented by means of digital
components, this method is found to be less efficient than the method that
uses complements and addition as stated below.

The subtraction of two positive numbers (M — N), both of base r, may
be done as follows:

(1) Add the minuend M to the r’s complement of the subtrahend V.

(2) Inspect the result obtained in step (1) for an end carry:
(a) If an end carry occurs, discard it.
(b) If an end carry does not occur, take the r’s complement of the
number obtained in step (1) and place a negative sign in front.

The following examples illustrate the procedure:

EXAMPLE 1-5. Using 10’s complement, subtract 72532 — 3250.

M = 72532 + 72532

N = 03250 96750
10’s complement of N = 96750 end carry > 1 /69282

ANSWER: 69282
EXAMPLE 1-6. Subtract: (3250 — 72532),,.
M = 03250 + 03250
N = 72532 27468
10’s complement of N = 27468 no carry /30718
ANSWER : —69282 = — (10’s complement of 30718)

EXAMPLE 1-7. Use 2’s complement to perform M — N with the given
binary numbers.

(a) M = 1010100 ., 1010100
N = 1000100 0111100

2’s complement of N = 0111100 end carry > 1 /0010000

ANSWER: 10000
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(b) M = 1000100 1000100
N = 1010100 0101100

2’s complement of N = 0101100 no carry /1110000

ANSWER : -10000 = - (2’s complement of 1110000)

The proof of the procedure is: The addition of M to the r’s complement
of N gives M + r" — N). For numbers having an integer part of n digits,
r” is equal to a 1 in the (n + 1)th position (what has been called the “end
carry”). Since both M and N are assumed to be positive, then:

@ M+ -N)Y=zrm ifM>=N, o

) M+rm-N)Y<rn fM<IN
In case (a) the answer is positive and equal to M — N, which is directly
obtained by discarding the end carry r™. In case (b) the answer is negative
and equal to —(N' — M). This case is detected from the absence of an end
carry. The answer is obtained by taking a second complement and adding a
negative sign: — [f" — (M +rm — N)] = - (N — M).
Subtraction with {r — 1)'s Complement

The procedure for subtraction with the (r — 1)’s complement is exactly
the same as the one used with the r’s complement except for one variation,
called “end around carry,” as shown below. The subtraction of M — N,
both positive numbers in base 7, may be calculated in the following
manner:

(1) Add the minuend M to the (r — 1)’s complement of the

subtrahend M.
(2) Inspect the result obtained in step (1) for an end carry.

(a) If an end carry occurs, add 1 to the least significant digit (end around
carry).

(b) If an end carry does not occur, take the (r — 1)’s complement of
the number obtained in step (1) and place a negative sign in front.

The proof of this procedure is very similar to the one given for the r’s
complement case and is left as an exercise. The following examples illustrate
the procedure.

EXAMPLE 1-8. Repeat Exs. 1-5 and 1-6 using 9’s complements.
(a) M = 72532 72532

N = 03250

96749

end around carry C 1 /69281
+

9’s complement of N = 96749
ANSWER: 69282

1

69282
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(b) M = 03250 + 03250
N = 72532 27467

no carry /30717
9’s complement of N = 27467 '
ANSWER: -69282 = — (9’s complement of 30717)

EXAMPLE 1-9. Repeat Ex. 1-7, using 1’s complement.

(a) M = 1010100 + 1010100
N = 1000100 ‘ 0111011

end around carry~1 /0001111 +

1
0010000

1’s complement of ¥ = 0111011
- ANSWER: 10000

(b) M = 1000100 + 1000100
N = 1010100 0101011

no carry 1101111

1’s complement of N = 0101011
ANSWER: —10000 = — (1’s complement of 1101111)

Comparison Between 1's and 2’s Complements

A comparison between 1’s and 2’s complements reveals the advantages
and disadvantages of each. The 1’s complement has the advantage of being
easier to implement by digital components since the only thing that must
be done is to change O’s into 1’s and 1’s into 0’s. The implementation of
the 2’s complement may be obtained in two ways: 1) by adding 1 to the
least significant digit of the 1’s complement, or 2) by leaving all leading O’s
in the least significant positions and the first 1 unchanged, and only then
changing all 1’s into 0’s and all 0’s into 1’s. During subtraction of two
numbers by complements, the 2’s complement is advantageous in that only
one arithmetic addition operation is required. The 1’s complement requires
two arithmetic additions when an end around carry occurs. The 1’s comple-
ment has the additional disadvantage of possessing two arithmetic zeros: one
with all 0’s and one with all 1’s. To illustrate this fact, consider the
subtraction of the two equal binary numbers 1100 — 1100 = 0
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Using 1’s complement

1100
0011
+ 1111

complement again to obtain: —0000

Using 2’s complement

1100
* 0100
+ 0000

While the 2’s complement has only one arithmetic zero, the 1’s complement
zero can be positive or negative, which may complicate matters.

Complements, very useful for arithmetic manipulations in digital
computers, are discussed more in Chs. 8 and 9. However, the 1’s comple-
ment is also. useful in logical manipulations (as will be shown later), since
the change of 1’s to O’s and vice versa is equivalent to a logical inversion
operation. The 2’s complement is used only in conjunction with arithmetic
applications. Consequently, it is convenient to adopt the following conven-
tion: when the word complement, without mention of the type, is used in
conjunction with a nonarithmetic application, the type is assumed to be the
1’s complement.

1-6 BINARY CODES

Electronic digital systems use signals that have two distinct values and
circuit elements that have two stable states. There is a direct analogy among
binary signals, binary circuit elements, and binary digits. A binary number
of n digits, for example, may be represented by n binary circuit elements,
each having an output signal equivalent to a O or a 1. Digital systems
represent and manipulate not only binary numbers, but also many other
discrete elements of information. Any discrete element of information
distinct among a group of quantities can be represented by a binary code.
For example, red is one distinct color of the spectrum. The letter A is one
distinct letter of the alphabet.

A bit, by definition, is a binary digit. When used in conjunction with a
binary code, it is better to think of it as denoting a binary quantity equal
to 0 or 1. To represent a group of 27 distinct elements in a binary code
requires a minimum of n bits. This is because it is possible to arrange n
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bits in 2" distinct ways. For example, a group of four distinct quantities
can be represented by a two-bit code with each quantity assigned one of
the following bit combinations: 00, 01, 10, 11. A group of eight elements
requires a three-bit code with each element assigned to one and only one of
the following: 000, 001, 010, 011, 100, 101, 110, 111. The examples show
that the distinct bit combinations of an n-bit code can be found by
counting in binary from 0 to (2% — 1). Some bit combinations are
unassigned when the number of elements of the group to be coded is not a
multiple of power of two. The 10 decimal digits O, 1, 2, ..., 9 are an
example of such a group. A binary code that distinguishes among 10
elements must contain at least four bits; three bits can distinguish a
maximum of eight elements. Four bits can form 16 distinct combinations,
but since only 10 digits are coded, the remaining six combinations are
unassigned and not used.

Although the minimum number of bits required to code 27 distinct
quantities is n, there is no maximum number of bits that may be used for
a binary code. For example, the 10 decimal digits can be coded with 10
bits, and each decimal digit assigned a bit combination of nine 0’s and a 1.
In this particular binary code, the digit 6 is to be assigned the bit
combination 0001000000.

Decimal Codes

Binary codes for decimal digits require a minimum of four bits.
Numerous different codes can be obtained by arranging four or more bits in
10 distinct possible combinations. A few possibilities are shown in
Table 1-2.

Table 1-2 Binary Codes for the Decimal Digits

Decimal (BCD) (Biquinary)
digit 8421 Excess-3 84-2-1 2421 5043210
0 0000 0011 0000 0000 0100001
1 0001 0100 0111 0001 0100010
2 0010 0101 0110 0010 0100100
3 0011 0110 0101 0011 0101000
4 0100 0111 0100 0100 0110000
5 0101 1000 1011 1011 1000001
6 0110 1001 1010 1100 1000010
7 0111 1010 1001 1101 1000100
8 1000 1011 1000 1110 1001000
9 1001 1100 1111 1111 1010000
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The BCD (binary coded decimal) is a straight assignment of the binary
equivalent. It is possible to assign weights to the binary bits according to
their position. The weights in the BCD code are 8, 4, 2,1. The bit
assignment 0110, for example, can be interpreted by the weights to repre-
sent the decimal digit 6 because: 0 X 8 + | X 4+ 1 X 2+ 0X 1 =6.1It
is also possible to assign negative weights to a decimal code, as shown by
the 8,4,—-2,—1 code. In this case, the bit combination 0110 is interpreted
as the decimal digit 2, as obtained from: 0 X 8 + 1 X 4+ 1 X (-2)+0
X (1) = 2. Two other weighted codes shown in the table are the 2421
and the 5043210. A decimal code that has been used in some old com-
puters is the excess-3 code. This is an unweighted code; its code assignment
is obtained from the corresponding value of BCD after the, addition of 3.

Numbers are represented in digital computers either in binary or in
decimal through a binary code. When a user specifies his data, he likes to
give it in decimal form. The input decimal numbers are stored internally in
the computer by means of a decimal code. Each decimal digit requires at
least four binary storage elements. ‘The decimal numbers are converted to
binary when arithmetic operations are done internally with numbers repre-
sented in binary. It is also possible to perform the arithmetic operations
directly in decimal with all numbers left in a coded- form throughout. For
example, the decimal number 395, when converted to binary, is equal to
110001011 and consists of nine binary digits. The same number, when
represented internally in the BCD code, occupies four bits for each decimal
digit for a total of 12 bits: 001110010101. The first four bits represent a
3; the next four a 9; and the last four a 5.

It is very important to understand the difference between conversion of
a decimal number to binary and the binary coding of a decimal number. In
each case, the final result is a series of bits. The bits obtained from
conversion are binary digits. Bits obtained from coding are combinations of
I’s and O’s arranged according to the rules of the code used. Therefore, it
is extremely important to realize that a series of 1°s and 0’s in a digital
system may sometimes represent a binary number, and at other times
represent some other discrete quantity of information as specified by a
given binary code. The BCD code, for example, has been chosen to be both
a code and a direct binary conversion as long as the decimal numbers are
integers from O to 9. For numbers greater than 9, the conversion and the
coding are completely different. This concept is so important that it is
worth repeating with another example. The binary conversion of decimal 13
is 1101; the coding of decimal 13 with BCD is 00010011.

From the five binary codes listed in Table 1-2, the BCD seems the most
natural to use and is indeed the one most commonly encountered. The
other four-bit codes listed have one characteristic in common not found in
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BCD. The excess-3; 2,4,2,1; and 8,4,~2,—1 are self complementary codes.
That is, the 9’s complement of the decimal number is easily obtained by
changing 1’s to 0’s and 0’s to 1’s. For example, the decimal 395 is
represented in the 2,4,2,1 code by 001111111011. Its 9°s complement 604
is represented by 110000000100, which is easily obtained from the replace-
ment of 1’s by 0’s and 0’s by 1’s. This property is useful when arithmetic
operations are internally done with decimal numbers (in a binary code) and
subtraction is calculated by means of 9’s complement.

The biquinary code shown in Table 1-2 is an example of a seven-bit code
with error detection properties. Each decimal digit consists of five 0’s and
two 1’s placed in the corresponding weighted columns. The error detection
property of this code may be understood when one realizes that digital
systems represent binary 1 by one distinct signal and binary O by a second
distinct signal. During transmission of signals from one location to another,
an error may occur. One or more bits may change value. A circuit in the
receiving side can detect the presence of more (or less) than two I’s and, if
the received combination of bits does not agree with the allowable combina-
tion, an error is detected.

Error Detection Codes

Binary information, be it pulse modulated signals or digital computer
input or output, may be transmitted through some form of communication
medium such as wires or radio waves. Any external noise introduced into a
physical communication medium changes bit values from 0 to 1 or vice
versa. An error detection code can be used to detect errors during transmis-
sion. The detected error cannot be corrected but its presence is indicated.
The usual procedure is to observe the frequency of errors. If errors occur
only once in awhile at random without a pronounced effect on the overall
information transmitted, then either nothing is done or the particular
erroneous message is transmitted again. If the error occurs so often as to
distort the meaning of the received information, the system is checked for
malfunction.

A parity bit is an extra bit included with a message to make the total
number of 1’s either odd or even. A message of four bits and a parity bitP
is shown in Table 1-3. In (a) the bit P is chosen in such a way as to make
the sum of all 1’s odd (in all five bits). In (b) the P bit is chosen to make
the sum of all 1’s even. During transfer of information from one location
to another, the parity bit is handled as follows: In the sending end, the
message (in this case the first four bits) is applied to a “parity generation”
network where the required P bit is generated. The message, including the
parity bit, is transferred to its destination. In the receiving end, all the
incoming- bits (in this case five) are applied to a “parity check” network to
check the proper parity adopted. An error is detected if the checked parity




Sec. 1-6 BINARY CODES 19

Table 1-3 Parity Bit Generation

(a) Message P (odd) (b) Message P (even)
0000 1 0000 0
0001 0 0001 1
0010 0 0010 1
0011 1 0011 0
0100 0 0100 1
0101 1 0101 0
0110 1 0110 0
0111 0 0111 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 1
1100 1 1100 0
1101 0 1101 1
1110 0 1110 1
1111 1 1111 0

does not correspond to the adopted one. The . parity method detects the
presence of one, three, or any odd combination of errors. An even com-
bination of errors is undetectable.

The Reflected Code

Digital systems can be designed to process data in discrete form only.
Many physical systems supply continuous output data. This data must be
converted into digital or discrete form before it is applied to a digital
system. Continuous or analog information is converted into digital form by
means of an analog to digital converter. It is sometimes convenient to use
the reflected code as shown in Table 1-4 to represent the digital data
converted from the analog data. The advantage of the reflected code over
pure binary numbers is that a number in the reflected code changes by
only one bit as it proceeds from one number to the next. A typical
application of the reflected code occurs when the analog data is represented
by a continuous change of a shaft position. The shaft is partitioned into
segments. Each segment is assigned a number. If adjacent segments are made
to correspond to adjacent reflected code numbers, ambiguity is reduced
when detection is sensed in the line that separates any two segments. The
reflected code shown in Table 14 is only one of many possible such codes.
To obtain a different reflected code, one can start with any bit combina-
tion and proceed to obtain the next bit combination by changing only one
bit from O to 1 or 1 to O in any desired random fashion, as long as two
numbers do not have identical code assignments.
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Table 1-4 4-Bit Reflected Code

Reflected code Decimal equivalent
0000 0
0001 1
0011 2
0010 3
0110 4
0111 5
0101 6
0100 7
1100 8
1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

Alphanumeric Codes

Many applications of digital computers require the handling of data that
consists not only of numbers, but also of letters. For instance, an insurance
company with millions of policy holders may use a digital computer to
process its files. To represent the policy holder’s name in binary form, it is
necessary to have a binary code for the alphabet. In addition, the same
binary code must represent decimal numbers and some other special charac-
ters. An alphanumeric (sometimes abbreviated alphameric) code is a binary
code of a group of elements consisting of the 10 decimal digits, the 26
letters of the alphabet, and a certain number of special symbols such as $.
The total number of elements in an alphanumeric group is greater than 36.
Therefore, it must be coded with a minimum of six bits (2¢ = 64, but 2°
= 32 is insufficient).

One possible arrangement of a six-bit alphanumeric code is shown in
Table 1-5 under the name of internal code. With a few variations, it is used
in many computers to represent alphanumeric characters internally. The
need to represent more than 64 characters (the lower case letters and
special control characters for the transmission of digital information) gave
rise to seven- and eight-bit alphanumeric codes. One such code is known as
ASCII (American Standard Code for Information Interchange); another is
known as EBCDIC (Extended BCD Interchange Code). The ASCII code
listed in Table 1-5 consists of seven bits but is, for all practical purposes, an
eight-bit code because an eighth bit is invariably added for parity. When
discrete information is transferred through punched cards, the alphanumeric
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Table 1-5 Alphanumeric Character Codes
6-bit 7-bit 8-bit 12-bit
internal ASclr EBCDIC card
Character code code code code

A 010 001 100 0001 1100 0001 12,1
B 010 010 100 0010 1100 0010 12,2
C 010 011 100 0011 1100 0011 12,3
D 010 100 100 0100 1100 0100 124
E 010 101 100 0101 1100 0101 12,5
F 010 110 100 0110 1100 0110 12,6
G 010 111 100 0111 1100 0111 12,7
H 011 000 100 1000 1100 1000 12,8
I 011 001 100 1001 1100 1001 12,9
J 100 001 100 1010 1101 0001 11,1
K 100 010 100 1011 1101 0010 11,2
L 100 011 100 1100 1101 0011 11,3
M 100 100 100 1101 1101 0100 11,4
N 100 101 100 1110 1101 0101 11,5
[e) 100 110 100 1111 1101 0110 11,6
P 100 111 101 0000 1101 0111 11,7
Q 101 000 101 0001 1101 1000 11,8
R 101 001 101 0010 1101 1001 11,9
S 110 010 101 0011 1110 0010 0,2
T 110 011 101 0100 1110 0011 0,3
§) 110 100 101 0101 1110 0100 0,4
\' 110 101 101 0110 1110 0101 0,5
w 110 110 101 0111 1110 0110 0,6
X 110 111 101 1000 1110 0111 0,7
Y 111 000 101 1001 1110 1000 0,8
z 111 001 101 1010 1110 1001 0,9
0 000 000 011 0000 1111 0000 0
1 000 001 011 0001 1111 0001 1
2 000 010 011 0010 1111 0010 2
3 000 011 011 0011 1111 0011 3
4 000 100 011 0100 1111 0100 4
5 000 101 011 0101 1111 0101 5
6 000 110 011 0110 1111 o110 6
7 000 111 011 o111 1111 0111 7
8 001 000 011 1000 1111 1000 8
9 001 001 011 1001 1111 1001 9
blank 110 000 010 0000 0100 0000 no punch
. 011 011 010 1116 0100 1011 12,8,3
( 111 100 010 1000 0100 1101 12,8,5
+ 010 000 010 1011 0100 1110 12,8,6
$ 101 011 010 0100 0101 1011 11,8,3
* 101 100 010 1010 0101 1100 11,84
) 011 100 010 1001 0101 1101 11,8,5
- 100 000 010 1101 0110 0000 11
/ 110 001 010 1111 0110 0001 0,1
, 111 011 010 1100 0110 1011 0,8,3
= 001 011 011 1101 0111 1110 8,6
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characters use a 12-bit binary code. A punched card consists of 80 columns
and 12 rows. Each column represents an alphanumeric character by
punching holes in the appropriate rows. A hole is sensed as a 1 and the
absence of a hole is sensed as a 0. The 12 rows are marked, starting from
the top, as the 12, 11, 0, 1, 2,..., 9 punch. The first three are called the
zone punch and the last 9 are called the numeric punch. The 12-bit card
code shown in Table 1-5 lists the rows where a hole is punched (giving the
1’s). The remaining unlisted rows are assumed to be 0’s. The 12-bit card
code is inefficient with respect to the number of bits used. Most computers
translate the input code into an internal six-bit code. As an example, the
internal code representation of the name “John Doe” is:

1100001 100110 011000 100101 110000 010100 100110 010101
J ) H N blank D 0 E

1-7 BINARY STORAGE AND REGISTERS

The discrete elements of information in a digital computer must have a
physical existence in some information storage medium. Furthermore, when
discrete elements of information are represented in binary form, the infor-
mation storage medium must contain binary storage elements for storing
individual bits. A binary cell is a device that possesses two stable states and
is capable of storing one bit of information. The input to the cell receives
excitation signals that set it to one of the two states. The output of the
cell is a physical quantity that distinguishes between the two states. The
information stored in a cell is a 1 when it is in one stable state and a O
when in the other stable state. Examples of binary cells are electronic
flip-flop circuits, ferrite cores used in memories, and positions punched with
a hole or not punched in a card.

Registers

A register is a group of binary cells. Since a cell stores one bit of
information, it follows that a register with n cells can store any discrete
quantity of information that contains »n bits. The state of a register is an
n-tuple number of 1’s and 0’s with each bit designating the state of one
cell in the register. The content of a register is a function of the interpreta-
tion given to the information stored in it. Consider for example, the
following 16-cell register:

Li]ifofofofofsftftftfofofrtfofof1]

1 23 4 5 6 7 8 9 10111213 141516
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Physically, one may think of the register as composed of 16 binary cells,
with each cell storing either a 1 or a 0. Suppose that the bit configuration
stored in the register is as shown. The state of the register is the 16-tuple
number 1100001111001001. Clearly, a register with n cells can be in one
of 27 possible states. Now, if one assumes that the content of the register
represents a binary integer, then obviously the register can store any binary
number from O to 2'® — 1. For the particular example shown, the content
of the register is the binary equivalent of the decimal number 482121. If it
is assumed that the register stores alphanumeric characters of an eight-bit
code, the content of the register is any two meaningful characters
(unassigned bit combinations do not represent meaningful information). In
the EBCDIC code, the above example represents the two characters C (left
eight bits) and I (right eight bits). On the other hand, if one interprets the
content of the register to be four decimal digits represented by a four-bit
code, the content of the register is a four-digit decimal number. In the
excess-3 code, the above example is the decimal number 9096. The content
of the register is meaningless in BCD since the bit combination 1100 is not
assigned to any decimal digit. From this example, it is clear that a register
can store one or more discrete elements of information and that the same
bit configuration may be interpreted differently for different types of
elements of information. It is important that the user store meaningful
information in registers and that he program the computer to process this
information according to the type of information stored.

Register Transfer

A digital computer is characterized by its registers. The memory unit
(Fig. 1-1) is merely a collection of thousands of registers for storing digital
information. The processor unit is composed of various registers that store
operands upon which operations are performed. The control unit uses
registers to keep track of various computer sequences, and every input or
output device must have at least one register to store the information
transferred to or from the device. An inter-register transfer operation, a
basic operation in digital systems, consists of a transfer of the information
stored in one register into another. Figure 1-2 illustrates the transfer of
information among registers and demonstrates pictorially the transfer of
binary information from a teletype keyboard into a register in the memory
unit. The input teletype unit is assumed to have a keyboard, a control
circuit, and an input register. Each time a key is struck, the control enters
into the input register an equivalent eight-bit alphanumeric character code.
We shall assume that the code used is the ASCII code with an odd parity
- eighth bit. The information from the input register is transferred into the
eight least significant cells of a processor register. After every transfer, the
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Figure 1-2 Transfer of information with registers

input register is cleared to enable the control to insert a new eight-bit code
when the keyboard is struck again. Each eight-bit character transferred to
the processor register is preceeded by a shift of the previous character to
the next eight-cells on its left. When a transfer of four characters is
completed, the processor register is full; and its contents are transferred into
a memory register. The content stored in the memory register shown in
Fig. 1-2 came from the transfer of the characters JOHN after striking the
four appropriate keys.

To process discrete quantities of information in binary form, a computer
must be provided with: (a) devices that hold the data to be processed and
(b) circuit elements that manipulate individual bits of information. The
device most commonly used for holding data is a register. Manipulation of
binary variables is done by means of digital logic circuits. Figure 1-3
illustrates the process of adding two 10-bit binary numbers. The memory
unit, which normally consists of thousands of registers, is shown in the
diagram with only three of its registers. The part of the processor unit
shown consists of three registers, R1, R2, and R3, together with digital
logic circuits that manipulate the bits of R1 and R2 and transfer into R3 a
binary number equal to their arithmetic sum. Memory registers store infor-
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Figure 1-3 Example of binary information processing

mation and are incapable of processing the two operands. However, the
information stored in memory can be transferred to processor registers.
Results obtained in processor registers can be transferred back into a
memory register for storage until needed again. The diagram shows the
contents of two operands transferred from two memory registers into R1l
and R2. The digital logic circuits produce the sum, which is transferred to
register R3. The contents of R3 can now be transferred back to one of the
memory registers.

The last two examples have demonstrated the information flow capabil-
ities of a digital system in a very simple manner. The registers of the
system are the basic elements for storing and holding the binary informa-
tion. The digital logic circuits process the information. Digital logic circuits
and their manipulative capabilities are introduced in the next section. The
subject of registers and register transfer operations is taken up again in
Ch. 8.
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1-8 BINARY LOGIC

Binary logic deals with variables that take on two discrete values and with
operations that assume logical meaning. The two values the variables take
may be called by different names (such as tfrue and false, yes and no, etc.),
but for our purpose it is convenient to think in terms of bits and assign
the values of 1 and 0. Binary logic is used to describe, in a mathematical
way, the manipulation and processing of binary information. It is
particularly suited for the analysis and design of digital systems. For
example, the digital logic circuits of Fig. 1-3 that perform the binary
arithmetic are circuits whose behavior is most conveniently expressed by
means of binary variables and logical operations. The binary logic to be
introduced in this section is equivalent to an algebra called Boolean algebra.
The formal presentation of a two-valued Boolean algebra is covered in more
detail in Ch. 2. The purpose of this section is to introduce Boolean algebra
in a heuristic manner and relate it to digital logic circuits and binary
signals.

Definition of Binary Logic

Binary logic consists of binary variables and logical operations. The
variables are designated by letters of the alphabet such as 4, B, C, x, y, z,
etc., with each variable having two and only two distinct possible values, 1
and 0. There are three basic logical operations, AND, OR, and NOT.

1. AND: This operation is represented by a dot or an absence of an
operator. For example, x *+ y = z or xy = z is read: “x AND y is
equal to z.” The logical operation AND is interpreted to mean that z
= 1 if and only if x = 1 and y = 1; otherwise z = 0. (Remember that
x, v, and z are binary variables and can be equal either to 1 or O,
and nothing else).

2. OR: This operation is represented by a plus sign. For example, x + y
= z is read: “x OR y is equal to z,” meaning that z = 1 if x = 1 or
if y=1o0rif bothx =1andy =1. If bothx =0 and y =0, then

z=0.
3. NOT: This operation is represented by a prime (sometimes by a bar).
For example, x' = z (or x = z) is read: “x not is equal to z,”

meaning that z is what x is not; that is, if x = 1; then z = 0; but if
x =0, thenz = 1.
Binary logic resembles binary arithmetic and the operations AND and OR

have some similarities to multiplication and addition, respectively. In fact,
the symbols used for AND and OR are the same as those used for
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multiplication and addition. However, binary logic should not be confused
with binary arithmetic. One should realize that an arithmetic variable desig-
nates a number that may consist of many digits. A logic variable is always
either a 1 or a 0. For example, in binary arithmetic we have 1 + 1 = 10
(read: “‘one plus one is equal to 2”), while in binary logic we have 1 + 1 =
1 (read: “one OR one is equal to one”).

For each combination of the value of x and y, there is a value of z
specified by the definition of the logical operation. These definitions may
be listed in a compact form using truth tables. A truth table is a table of
all possible combinations of the variables showing the relation between the
values that the variables may take and the result of the operation. For
example, the truth tables for the operations AND and OR with variables x
and y are obtained by listing all possible values that the variables may have
when combined in pairs. The result of the operation for each combination
is then listed in a separate row. The truth tables for AND, OR, and NOT
are listed in Table 1-6. These tables clearly demonstrate the definitions of
the operations.

Table 1-6 Truth Tables of Logical Operations

AND OR NOT
xylx‘y xy|x+y xIx'
00 0 00 0 011
01 0 01 1 110
10 0 10 1
11 1 11 1

Switching Circuits and Binary Signals

The use of binary variables and the application of binary logic is
demonstrated by the simple switching circuits of Fig. 1-4. Let the manual
switches A and B represent two binary variables with values equal to O
when the switch is open and 1 when the switch is closed. Similarly, let the
lamp L represent a third binary variable equal to 1 when the light is on
and O when off. For the switches in series, the light turns on if 4 and B
are closed. For the switches in parallel, the light turns on if 4 or B is
closed. It is obvious that the two circuits can be expressed by means of
binary logic with the AND and OR operations, respectively:

L =4 +B for the circuit of Fig. 1-4(a)
L =A+B for the circuit of Fig. 1-4(b)

Electronic digital circuits are sometimes called switching circuits because
they behave like a switch with the active element such as a transistor either
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Figure 1-4 Switching circuits that demonstrate binary logic

conducting (switch closed) or not conducting (switch open). Instead of
changing the switch manually, an electronic switching circuit uses binary
signals to control the conduction or nonconduction state of the active
element. Electrical signals such as voltages or currents exist throughout a
digital system in either one of two recognizable values (except during
transition). Voltage operated circuits, for example, respond to two separate
voltage levels which represent a binary variable equal to logic-1 or logic-0.
For example, a particular digital system may define logic-1 as a signal with
a nominal value of 3 volts, and logic-0 as a signal with a nominal value of
0 volt. As shown in Fig. 1-5, each voltage level has an acceptable deviation
from the nominal. The intermediate region between the allowed regions is
crossed only during state transitions. The input terminals of digital circuits
accept binary signals within the allowable tolerances and respond at the
output terminal with binary signals that fall within the specified tolerances.

Volts
4
Tolerance
Nominal logic-1 3 ¢ allowed
for logic-1
2

f

Transition occurs
between these limits

1‘ l
0.5
/ /| Tolerance
Nominal logic-0 0 7 allowed
/ / for logic-0
. -05

Figure 1-5 Example of binary signals
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Logic Gates

Electronic digital circuits are also called logic circuits because, with the
proper input, they establish logical manipulation paths. Any desired informa-
tion for computing or control can be operated upon by passing binary
signals through various combinations of logic circuits, each signal represen-
ting a variable and carrying one bit of information. Logic circuits that
perform the logical operations of AND, OR, and NOT are shown with their
symbols in Fig. 1-6. These circuits, called gates are blocks of hardware that
produce a logic-1 or logic-0 output signal if input logic requirements are
satisfied. Note that four different names have been used for the same type
of circuits: digital circuits, switching circuits, logic circuits, and gates. All
four names are widely used, but we shall refer to the circuits as AND, OR,
and NOT gates. The NOT gate is sometimes called an inverter circuit since
it inverts a binary signal.

x— )zzx.y x:i>z=x+y . => v
Yy y

(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

A

g—— F = ABC B§>G_=_A+B+C+D
— )_ c

¢ D

(d) Three -input AND gate (e) Four -input OR gate

Figure 1-6 Symbols for digital logic circuits

The input signals x and y in the two-input gates of Fig. 1-6 may exist in
one of four possible states: 00, 10, 11, or 01. These input signals are
shown in Fig. 1-7, together with the output signals for the AND and OR
gates. The timing diagrams of Fig. 1-7 illustrate the response of each circuit
to each of the four possible input binary combinations. The reason for the
name inverter for the NOT gate is apparent from a comparison of the signal
x (input of inverter) and that of x" (output of inverter).

AND:x-y 0 o[ Tlo o

Figure 1-7 Input-output signals for gates (a), (b), and (c) of Figure 1-6
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AND and OR gates may have more than two inputs. An AND gate with
three inputs and an OR gate with four inputs are shown in Fig. 1-6. The
three-input AND gate responds with a logic-1 output if all three input
signals are logic-1. The output produces a logic-O0 signal if any input is
logic-0. The four-input OR gate responds with a logic-1 when any input is a
logic-1. Its output becomes logic-0 if all input signals are logic-0.

The mathematical system of binary logic is better known as Boolean, or
switching, algebra. This algebra is conveniently used to describe the opera-
tion of complex networks of digital circuits. Designers of digital systems use
Boolean algebra to transform circuit diagrams to algebraic expressions and
vice versa. Chapters2 and 3 are devoted to the study of Boolean algebra,
its properties and manipulative capabilities. We shall return to the subject of
logic gates in Ch.4 and show how Boolean algebra may be used to express
mathematically the interconnections among networks of gates.

PROBLEMS

1-1. Write the first 20 decimal digits in base 3.

1-2. Add and multiply the following numbers in the given base without
converting to decimal,

(a) (1230)4 and (23)4
(b) (135.4) and (43.2)
(c) (367)g and (715)s
(d) (296),2 and (57)12

1-3. Convert the decimal number 250.5 to base 3, base 4, base 7, base 8,
and base 16.

1-4. Convert the following decimal numbers to binary: 12-0625, 104,
673°23, and 1998.

1-5. Convert the following binary numbers to decimal: 10-10001,
101110-0101, 1110101-110, 1101101-111.

1-6. Convert the following numbers from the given base to the required
bases:

(a) decimal 225-225 to binary, octal, and hexadecimal
(b) binary 11010111-110 to decimal, octal, and hexadecimal
(¢) octal 623+77 to decimal, binary, and hexadecimal
(d) hexadecimal 2AC5+D to decimal, octal, and binary
1-7. Convert the following numbers to decimal.

(a) (1001001-011), (e) (0-342),
(b) (12121), (f) (50),
(c) (1032°2),4 (g) (8°3)

(d) (4310)s (h) (198),2
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1-8.

1-9.

1-10.
1-11.

1-21.

1-22.

Obtain the 1°s and 2’s complement of the following binary numbers:
1010101, 0111000, 0000001, 10000, 00000.

Obtain the 9’s and 10’s complement of the following decimal num-
bers: 13579, 09900, 90090, 10000, 00000.

Find the 10’s complement of (935),;.

Perform the subtraction with the following decimal numbers using,
(1) 10’s complement and (2)9’s complement. Check the answer by
straight subtraction.

(a) 5250 — 321 (c) 753 — 864
(b) 3570 — 2100 (d) 20 — 1000

. Perform the subtraction with the following binary numbers using

(1) 2’s complement and (2) I’s complement. Check the answer by
straight subtraction.

(a) 11010 — 1101 (c) 10010 — 10011
(b) 11010 — 10000 (d) 100 — 110000

. Prove the procedure stated in Sec. 1-5 for the subtraction of two

numbers with (r — 1)’s complement.

. For the weighted codes (a) 3,3,2,1 and (b) 4,4,3,-2 for the decimal

digits, determine all possible tables so that the 9’s complement of
each decimal digit is obtained by changing 1’s to 0’s and 0’s to I’s.

. Represent the decimal number 8620 (a) in BCD, (b) in excess-3 code,

(c) in 2,4,2,1 code, and (d) as a binary number.

. A binary code uses 10 bits to represent each of the 10 decimal digits.

Each digit is assigned a code of nine 0’s and a 1. The code for digit
6, for example, is 0001000000. Determine the binary code for the
remaining decimal digits.

. Obtain the weighted binary code for the base 12 digits using weights

of 5421.

. Determine the odd parity bit generated when the message is the 10

decimal digits in the 8,4,-2,-1 code.

. Determine two other combinations for a reflected code other than the

one shown in Table 14.

. Obtain a binary code to represent all base 6 digits so that the 5’s

complement is obtained by replacing 1’s by 0’s and 0’s by 1’s in the
bits of the code.

Assign a binary code in some orderly manner to the 52 playing cards.
Use the minimum number of bits.

Write your first name, middle initial, and last name in an eight-bit
code made up of the seven ASCII bits of Table 1-5 and an even
parity bit in the most significant position. Include blanks between
names and a period after the middle initial.



32

1-23.

1-24.

1-25.

1-26.

1-27.

BINARY SYSTEMS Chap. 1

Show the bit configuration of a 24-cell register when its content
represents (a) the number (295),0 in binary, (b) the decimal number
295 in BCD, (c) the characters XYS in EBCDIC.

The state of a 12-cell register is 010110010111, What is its content if
it represents (a) three decimal digits in BCD, (b) three decimal digits
in excess-3 code, (c) three decimal digits in 2,4,2,1 code, (d) two
characters in the internal code of Table 1-5?

Show the contents of all registers in Fig. 1-3 if the two binary
numbers added have the decimal equivalent of 257 and 1050.

Express the following switching circuit in binary logic notation.

A L
— > < @®
Voltage
source

Show the signals (by means of a diagram similar to Fig. 1-7) of the
outputs F and G in Fig. 1-6. Use arbitrary binary signals for the
inputs A, B, C, and D.



BOOLEAN
2 ALGEBRA

2-1 BASIC DEFINITIONS

Boolean algebra like any other deductive mathematical system may be
defined with a set of elements, a set of operators, and a number of
unproved axioms or postulates. A set of elements is any collection of
objects having a common property. If S is a set, and x and y are certain
objects, then x €S denotes that x is a member of the set S, while y¢S
denotes that y is not an element of S. A set with a denumerable number
of elements is specified by curly brackets: A= {1,2,3,4}; ie., the ele-
ments of set A are the numbers 1, 2, 3, and 4. A binary operator defined
on a set S of elements is a rule that assigns to each pair of elements from
S a unique element from S. As an example, consider the relation a * b =c,
we say that * is a binary operator if it specifies a rule for finding ¢ from
the pair (¢, b) and also if @, b, ¢c € S. However, # is not a binary operator
if a, b € S, while the rule finds ¢ ¢ S.

The postulates of a mathematical system form the basic assumptions
from which it is possible to deduce the rules, theorems, and properties of
the system. The most common postulates used to formulate various alge-
braic structures are:

1. Closure. A set S is closed with respect to a binary operator if for
every pair of elements of S, the binary operator specifies a rule for
obtaining a unique element of S. For example, the set of natural
numbers N = {1, 2, 3, 4, ...} is closed with respect to the binary
operator plus (+) by the rules of arithmetic addition, since for any a,
b €N we obtain a unique cEN by the operation a +b=c. The set of

33
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natural numbers is not closed with respect to the binary operator
minus (—) by the rules of arithmetic subtraction because 2 — 3 = —1 and
2,3 € N, while (—1) €& N.

2. Associative law. A binary operator * on a set S is said to be
associative whenever:

x*y)sz=x#%(y*2z) foralx y z€S

3. Commutative law. A binary operator * on a set S is said to be
commutative whenever:

x*y=y*x forallx, y €S

4. Identity element. A set S is said to have an identity element with
respect to a binary operation # on S if there exists an element e € S
with 'the property:

exx=x*e=x forevery x €S

Example. The element O is an identity element with respect to opera-
tion + on the set of integers I ={. .. -3, -2,-1,0,1,2,3,..}
since

x+0=0+x=x foranyx €l

The set of natural numbers N has no identity element since O is
excluded from the set.

5. Inverse. A set S having the identity element e with respect to a
binary operator * is said to have an inverse whenever, for every x €
S, there exists an element y € S such that

xX*xy=e

Example. In the set of integers I with e = 0, the inverse of an
element (g) is (—a) since ¢ + (—a) = 0.

6. Distributive law. If * and * are two binary operators on a set S, * is
said to be distributive over * whenever

x*+(@yrz)=x*y): (x+*2)

An example of an algebraic structure is a field. A field is a set of
elements, together with two binary operators, each having properties 1 to 5
and both operators combined to give property 6. The set of real numbers
together with the binary operators + and * form the field of real numbers.
The field of real numbers is the basis for arithmetic and ordinary algebra.
The operators and postulates have the following meanings:

The binary operator + defines addition.
The additive identity is O.
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The additive inverse defines subtraction.

The binary operator + defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of @ = 1/a defines division; i.e., @ * 1/a = 1.
The only distributive law applicable is that of < over +:

a*b+c)=@-b)+(@- o)

2-2 AXIOMATIC DEFINITION OF BOOLEAN ALGEBRA

George Boole (1) in 1854 introduced a systematic treatment of logic and
developed for this purpose an algebraic system now called Boolean algebra.
C.E. Shannon (2) in 1938 introduced a two-valued Boolean algebra called
switching algebra, in which he demonstrated that the properties of bistable
electrical switching circuits can be represented by this algebra. For the
formal definition of Boolean algebra, we shall employ the postulates formu-
lated by E. V. Huntington (3) in 1904. These postulates or axioms are not
unique for defining Boolean algebra. Other sets of postulates have been
used.* Boolean algebra is an algebraic structure defined on a set of ele-
ments B together with two binary operators + and + provided the following
(Huntington) postulates are satisfied:

1(a) Closure with respect to the operator +.

(b) Closure with respect to the operator -.

2(a) An identity element with respect to +, designated by 0: x + 0 = 0
+x = x
(b) An identity element with respect to -, designated by 1: x » 1 = 1

+x =x
3(a) Commutative with respect to +: x +y =y + x.
(b) Commutative with respect to =: x « y = y » x.
4(a) - is distributive over +: x + (¥ +z) = (x - y) + (x * 2).
(b) + is distributive over *: x + (¥ + z) = (x +y) * (x + 2).

5  For every element x € B, there exists an element x' € B (called
the complement of x) such that

(@ x+x'=1land (b) x-x' =0

6 There exists at least two elements X, y € B such that x # y.
Comparing Boolean algebra with arithmetic and ordinary algebra
(the field of real numbers) we note the following differences:

*See for example Birkoff and Bartee (4), Chap. 5.
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(a) Huntington postulates do not include the associative law. However,
this law holds for Boolean algebra and can be derived (for both
operators) from the other postulates.

(b) The distributive law of + over *;ie, x + (¥ *z2)=(x +y) - (x +
z), is valid for Boolean algebra, but not for ordinary algebra.

(c) Boolean algebra does not have additive or multiplicative inverses;
therefore, there are no subtraction or division operations.

(d) Postulate 5 defines an operator called complement which is not
available in ordinary algebra.

(e) Ordinary algebra deals with the real numbers, which constitute an
infinite set of elements. Boolean algebra deals with the as yet
undefined set of elements B, but in the two-valued Boolean algebra
defined below (and of interest in our subsequent use of this
algebra), B is defined to be a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice
of symbols + and - is intentional to facilitate Boolean algebraic manipula-
tions by persons already familiar with ordinary algebra. Although one can
use some of his knowledge from ordinary algebra to deal with Boolean
algebra, the beginner must be careful not to substitute the rules of ordinary
algebra where they are not applicable.

It is important to distinguish between the elements of the set of an
algebraic structure and the variables of an algebraic system. For example,
the elements of the field of real numbers are numbers, while variables such
as a, b, c, etc., used in ordinary algebra, are symbols that stand for real
numbers. Similarly in Boolean algebra, one defines the elements of the set B
and variables such as x, y, z are merely symbols that represent the
elements. At this point, it is important to realize that in order to have a
Boolean algebra, one must show:

(a) the elements of the set B,

(b) the rules of operation for the two binary operators, and

(c) that the set of elements B together with the two operators satisfy the
six Huntington postulates.

One can formuiate many Boolean algebras, depending on the choice of
elements of B and the rules of operation.* In our subsequent work, we
shall deal only with a two-valued Boolean algebra; i.e., one with only two
elements. Two-valued Boolean algebra has applications in set theory (the
algebra of classes) and in propositional logic. Our interest here is with the
application of Boolean algebra to gate-type circuits.

*See for example Hohn (6), Whitesitt (7), or Birkhoff and Bartee (4).
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Two-Valued Boolean Algebra

A two-valued Boolean algebra is defined on a set of two elements, B =
{0, l}, with rules for the two binary operators + and + as shown in the
following operator tables (the rule for the complement operator is for verifica-
tion of postulate 5):

x x
1
1 0

These rules are exactly the same as the AND, OR, and NOT operations,
respectively, defined in Table 1-6. We must now show that the Huntington
postulates are valid for the set B = {0, 1} and the two binary operators
defined above.

1. Closure is obvious from the tables since the result of each operation is
either 1 or O and 1, 0 €B.

2. From the tables we see that

(@) 0+0 =0 0+1=1+40=1
b)) 1-1=1 1-0=0-1=0

which establishes the two identity elements 0 for + and 1 for + as
defined by postulate 2.

3. The commutative laws are obvious from the symmetry of the binary
operator tables.

4. (a) The distributive law x « (¥ + z) = (x * y) + (x = z) can be
shown to hold true from the operator tables by forming a truth
table of all possible values of x, y, and z. For each combination
we derive x *+ (y + z) and show that the value is the same as
x - -y)+&- 2.

N
N

¥ +2z) x -

A
®
N

Gy +x-2)

x -
0
0
0
0
0
1
1
1

P e D ek e e O -+

- O OO O | %

—_o0oR~ROQO|v%
=0 e QOO
-0 00000
—OoOROOOoQOO
= —-0 000 O
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(b) The distributive law of + over * can be shown to hold true by
means of a truth table similar to the one above.

5. From the complement table it is easily shown that:
(@ x+x =1,since0+0 =0+1=1and1+1=1+0=1

() x - x' =0,since0-0 =0+1=0and1l1-1=1-0=0
which verifies postulate 5.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two
distinct elements 1 and 0 with 1 # 0.

We have just established a two-valued Boolean algebra having a set of
two elements, 1 and O, two binary operators with operation rules equivalent
to the AND and OR operations, and a complement operator equivalent to
the NOT operator. Thus, Boolean algebra has been defined in a formal
mathematical manner and has been shown to be equivalent to the binary
logic presented heuristically in Sec. 1-8. The heuristic presentation is helpful
in understanding the application of Boolean algebra to gate-type circuits.
The formal presentation is necessary for developing the theorems and prop-
erties of the algebraic system. The two-valued Boolean algebra defined in
this section is also called ‘‘switching algebra” by engineers. In order to
emphasize the similarities between two-valued Boolean algebra and other
binary systems, this algebra was called “binary logic” in Sec. 1-8. From here
on, we shall drop the adjective ‘“‘two-valued” from Boolean algebra in
subsequent discussion.

2-3 BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA

Duality

The Huntington postulates have been listed in pairs and designated by
part (a) and part (b). One part may be obtained from the other if the
binary operators and the identity elements are interchanged. This important
property of Boolean algebra is called the duality principle. It states that
every algebraic expression deducible from the postulates of Boolean algebra
remains valid if the operators and identity elements are interchanged. In a
two-valued Boolean algebra, the identity elements and the elements of the
set B are the same; 1 and 0. The duality principle has many applications. If
the dual of an algebraic expression is desired, we simply interchange OR
and AND operators and replace 1’s by 0’ and 0’s by 1’s.

Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates.
The notation is simplified by omitting the - whenever this does not lead to
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Table 2-1 Postulates and Theorems of Boolean Algebra

Post. 2 (a) x+0=x b)) x1=x

Post. § @ x+x =1 ® x-x'=0

Theorem 1 (a) x+x=x M) x*x=x

Theorem 2 (A x+1=1 Mbx-0=0

Theorem 3 involution: (x')' =x

Post. 3 commutative: (@ x+y=y+x (b) xy=yx

Theorem 4 associative: (@ x+@+z)=(x+y)+z () x yz)=(xy)z

Post. 4 distributive: (@ x@y+ g) = )'cy’+xz (b) x +),)z = ,(x +)y) x+2)
Theorem 5 DeMorgan: @@ (x+y) =xy (b) xy) =x +y
Theorem 6 absorption: (@) x+xy=x (b) x(x+y)=x

confusion. The theorems and postulates listed are the most basic relations
of Boolean algebra. The reader is advised to become familiar with them as
soon as possible. The theorems, like the postulates, are listed in pairs; each
relation is the dual of the one paired with it. The postulates are basic
axioms of the algebraic structure and need no proof. The theorems must be
proven from the postulates. The proofs of the theorems with one variable
are presented below. At the right-hand side of the page is listed the number
of the postulate which justifies each step of the proof.

THEOREM 1(a): x + x = x

x+x=(x+x)-1 by postulate: 2(b)
= (x +x)(x +x) 5(a)
=x + xx' 4(b)
=x+0 5(b)
=x 2(a)
THEOREM 1(b): x - x = x
x *x=xx+0 by postulate: 2(a)
= xx + xx' 5(b)
=x (x +x') 4(a)
=x-1 5(a)
=x ‘ 2(b)

Note that theorem 1(b) is the dual of theorem 1(a) and that each step
of the proof in part (b) is the dual of part (a). Any dual theorem can be
similarly derived from the proof of its corresponding pair.

THEOREM 2(a): x + 1 = 1

x+1=1-(x+1) by postulate: 2(b)
= +x)x+ 1) 5(a)
=x+x -1 4(b)
=x +x 2(b)

=1 5(a)
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THEOREM 2(b): x *+ 0 = 0 by duality.

THEOREM 3: (x') = x

From postulate 5, we have x + x’ = 1 and x * x’ = 0, which defines the
complement of x. The complement of x' is x and is also (x')'. Therefore,
since the complement is unique, we have that (x') = x.

The theorems involving two or three variables may be proven algebrai-
cally from the postulates and the theorems which have already been proven.
Take for example the absorption theorem.

THEOREM 6(a): x + xy = x

x+xy=x-1+xy by postulate: 2(b)
=x (1 +y) 4(a)
=x@+1) 3(a)
=x -1 by theorem: 2(a)
=x by postulate: 2(b)

THEOREM 6(b): x (x +y) = x by duality.

The theorems of Boolean algebra can be shown to hold true by means
of truth tables. In truth tables, both sides of the relation are checked to
yield identical results for all possible combinations of variables involved. The
following truth table verifies the first absorption theorem.

fop—

y | xy | x+xy
0 0 0 0
0 |1 0 0
1 o} o 1
1 |1 1 1

The algebraic proofs of the associative law and De Morgan’s theorem are
long and will not be shown here. However, their validity is easily shown
with truth tables. For example, the truth table for the first De Morgan’s
theorem (x + y) = x'y" is shown below.

r !

y |x+y | (x+y)'“ x' | y' Ixy

x

0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0
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Operator Precedence

The operator precedence for evaluating Boolean expressions is: (1) paren-
theses, (2) NOT, (3) AND, (4) OR. In other words, the expression inside the
parentheses must be evaluated before all other operations. The next opera-
tion that holds precedence is the complement, then follows the AND and
finally the OR. As an example, consider the truth table for De Morgan’s
theorem. The left side of the expression is (x + y). Therefore, the
expression inside the parentheses is evaluated first and the result then
complemented. The right side of the expression is x'y’. Therefore, the
complement of x and the complement of y are both evaluated first and the
result is then ANDed. Note that in ordinary arithmetic the same precedence
holds (except for the complement) when multiplication and addition are
replaced by AND and OR, respectively.

Venn Diagram

A helpful illustration that may be used to visualize the relationship
among the variables of a Boolean expression is the Venn diagram. This
diagram consists of a rectangle such as shown in Fig. 2-1, inside of which
are drawn overlapping circles, one for each variable. Each circle is labeled
by a variable. We designate all points inside a circle as belonging to the
named variable and all points outside a circle as not belonging to the
variable. Take for example the circle labeled x. If we are inside the circle,
we say that x = 1; when outside, we say x = 0. Now, with two over-
lapping circles, there are four distinct areas inside the rectangle: The area
not belonging to either x or y (x'y’), the area inside circle y but outside x
(xy), the area inside circle x but outside y (x'), and the area inside both

circles (xy).

Figure 2-1 Venn diagram for two variables

Iay?

Xy

Venn diagrams may be used to illustrate the postulates of Boolean
algebra or to show the validity of theorems. Figure 2-2, for example,
illustrates that the area belonging to xy is inside the circle x, and therefore,
x + xy = x. Figure 2-3 illustrates the distributive law x(y + z) = xy + xz.
In this diagram we have three overlapping circles, one for each of the
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x(y+2) xy+xz

Figure 2-3 Venn diagram illustration of the distributive law

variables x, y, and z. It is possible to distinguish eight distinct areas in a
three-variable Venn diagram. For this particular example, the distributive law
is demonstrated by noting that the area intersecting the circle x with the
area enclosing y or z is the same area belonging to xy or xz.

2-4 BOOLEAN FUNCTIONS

A binary variable can take the value of 0 or 1. A Boolean function is an
expression formed with binary variables, the two binary operators OR and
AND, the unary operator NOT, parentheses, and equal sign. For a given
value of the variables, the function can be either 0 or 1. Consider for
example the Boolean function:

F, = xyz'

The function F; is equal to 1 if x = 1 and y = 1 and-z' = 1, otherwise F,
= 0. The above is an example of a Boolean function represented as an
algebraic expression. A Boolean function may also be represented in a truth
table. To represent a function in a truth table, we need a list of the 2"
combinations of 1’s and 0’ of the » binary variables, and a column
showing the combinations for which the function is equal to 1 or 0. As
shown in Table 2-2, there are eight possible distinct combinations for assign-
ing bits to three variables. The column labeled F; is either a 0 or a 1 for
each of these combinations. The table shows that the function F; is equal
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Table 2-2 Truth Tables for’ Fy = xyz', Fy=x+ y'z,
Fy=xyz+x'yz+xy and Fy =xy' +x'z

X ¥y z Fy F2 F3 Fa
0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 1 1
1 0 0 0 1 1 1
1 0 1 0 1 1 1
1 1 0 1 1 0 0
1 1 1 0 1 0 0

to 1 only when x = 1,y = 1, and z = 0. It is equal to O otherwise. (Note
that the statement z' = 1 is equivalent to saying that z = 0.) Consider now
the function:

Fy=x+y"z
F, =1ifx=1orif y =0, while z = 1. In Table 2-2, x = 1 in the last
four rows, and yz = 01 in rows 001 and 101. The latter combination
applies also for x = 1. Therefore, there are five combinations that make F,
= 1. As a third example, the function

Fy =x'yvz +x'yz + xy'
is shown in Table 2-2 with four 1’s and four 0%. F, is the same as F5 and
is considered below.

Any Boolean function can be represented in a truth table. The number
of rows in the table is 2, where n is the number of binary variables in the
function. The 1’s and 0’s combinations for each row is easily obtained from
the binary numbers by counting from O to 2”—1. For each row of the
table, there is a value for the function equal to either 1 or 0. The question
now arises, is an algebraic expression of a given Boolean function unique?
In other words, is it possible to find two algebraic expressions that specify
the same function? The answer to this question is yes. As a matter of fact,
the manipulation of Boolean algebra is applied mostly to the problem of

finding simpler expressions for the same function. Consider for example the
function

Fy = xy +x'g,

From Table 2-2, we find that F; is the same as F;, since both have
identical 1’s and 0’s for each combination of values of the three binary
variables. In general, two functions of n binary variables are said to be
equal if they have the same value for all possible 27 combinations of the n
variables.

A Boolean function may be transformed from an algebraic expression
into a logic diagram composed of AND, OR, and NOT gates. The imple-
mentation of the four functions introduced in the previous discussion is
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shown in Fig. 2-4. The logic diagram includes an inverter circuit for every
variable present in its complement form. (The inverter is unnecessary if the
complement of the variable is available.) There is an AND gate for each
term in the expression, and an OR gate is used to combine two or more
terms. From the diagrams it is obvious that the implementation of F,
requires less gates and less inputs than Fj. Since F, and F; are equal
Boolean functions, it is more economical to implement the F, form than
the F3 form. To find simpler circuits, one must know how to manipulate
Boolean functions to obtain equal and simpler expressions. What constitutes
the best form of a Boolean function depends on the particular application.
In this section, consideration is given to the criterion of equipment

minimization.
=D TT—>
y 1 F.
x 2
4 y
(a) F; =xyz W) F, =x+yz
x >
y {>‘f

2

(¢) Fy =x¥z+ xyz+xy

v e—
-

URY

(d) F, =xy+x2z

Figure 2-4 Implementation of Boolean functions with gates
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Algebraic Manipulation

A literal is a primed or unprimed variable. When a Boolean function is
implemented with logic gates, each literal in the function designates an
input to a gate, and each term is implemented with a gate. The minimiza-
tion of the number of literals and the number of terms will result in a
circuit with less equipment. It is not always possible to minimize both
simultaneously; usually, further criteria must be available. At the moment,
we shall narrow the minimization criterion to literal minimization. We shall
discuss other criteria in Ch. 5. The number of literals in a Boolean function
can be minimized by algebraic manipulations. Unfortunately, there are no
specific rules to follow that will guarantee the final answer. The only
method available is a cut-and-try procedure employing the postulates, the
basic theorems, and any other manipulation method which becomes familiar
with use. The following examples illustrate this procedure.

EXAMPLE 2-1. Simplify the following Boolean functions to a minimum
number of literals.

Lx+xy=@+x)x+y)=1-(x+y)=x+y
2x(x +y)=xx"+xy=0+xy =xp
3.xYz v xyz +xy' =Xz (¢ +y) +xy' =Xz +xp

4. xy +x'z +yz=xy +xz +yz (x +x)
=xy +x'z +xyz + x'yz
=xy (1 +2)+xz (1 +y)
=xy +x'z

5. +y) (' +2)(y +z)=(x +y) (x' +z) by duality from 4.

Functions 1 and 2 are the dual of each other and use dual expressions in
corresponding steps. Function 3 shows the equality of the functions F; and
F, discussed previously. The fourth illustrates the fact that an increase in
the number of literals sometimes leads to a final simpler expression. Func-
tion 5 is not minimized directly but can be derived from the dual of the
steps used to derive 4.

Complement of a Function

The complement of a function F is F’ and is obtained from an inter-
change of 0’s for 1’s and 1’s for O’ in the truth table. The complement of
a function may be derived algebraically through De Morgan’s theorem. This
pair of theorems is listed in Table 2-1 for two variables. De Morgan’s
theorems can be extended to three or more variables. The three-variable
form of the first De Morgan’s theorem is derived below. The postulates and
theorems are those listed in Table 2-1.
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MA+B+0))=U4+X) LetB+C=X
=A4'X' by theorem 5(a) (De Morgan)
=A4"+- (B +C) substitute B+C=X
=4+ BC) by theorem 5(a) (De Morgan)
= A'B'C’ by theorem 4(b) (associative)

De Morgan’s theorems for any number of variables resemble in form the
two-variable case and can be derived by successive substitutions similar to
the method used in the above derivation. These theorems can be generalized
as follows:

A+B+C+D+---+F =4ABCD ... F
(ABCD ---F)=4'"+B +C +D + ...+ F

The generalized form of De Morgan’s theorem states that the complement of
a function is obtained by interchanging AND and OR operators and comple-
menting each literal.

EXAMPLE 2-2. Find the complement of the functions F, = x'yz’ +
1t 1
xyzand F, =x (yz +yz).
Applying De Morgan’s theorem as many times as necessary, the comple-
ments are obtained as follows:

Fi = &'yz +xy'z) = ('yz') - Y2) =(x +y +2) (x +y + 2)

Fé - [x(})lzl +yz)]l - xl + (y’zl +yz)l - x' + O)’Z,), . @Z)'
=x"+ @ +2) @ +2)
A simpler procedure for deriving the complement of a function is to take
the dual of the function and complement each literal. This method follows
from the generalized De Morgan’s theorem. Remember that the dual of a

function is obtained from the interchange of AND and OR operators and
I’s and O’s.

EXAMPLE 2-3. Find the complement of the functions F, and F, of
Ex. 2-2 by taking their dual and complementing each literal.
1. F, =x'yz' +x'y'z
The dual of Fy is: (x' +y +2') (x' +y' +2)
Complement each literal: (x +y’ +z) (x +y +z') = F;
2.F, =x ('Z +y2)
The dual of F, is: x + (3 + 2') (¥ + 2)
Complement each literal: x' + ( +2) (¢ +z') = F,




Sec. 25 CANONICAL FORMS 47
2-5 CANONICAL FORMS
Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its
complement form (x). Now consider two binary variables x and y
combined with an AND operation. Since each variable may appear in either
form, there are four possible combinations: x'y’, x'y, xy', and xy. Each of
these four AND terms represents one of the distinct areas in the Venn
diagram of Fig.2-1 and is called a minterm, or a standard product. In a
similar manner, n variables can be combined to form 2" minterms. The 27
different minterms may be determined by a method similar to the one
shown in Table 2-3 for three variables. The binary numbers from 0 to 2% —
1 are listed under the n variables. Each minterm is obtained from an AND
term of the n variables, with each variable being primed if the correspond-
ing bit of the binary number is a O and unprimed if a 1. A symbol for

Table 2-3 Minterms and Maxterms for Three Binary Variables

Minterms Maxterms
Xyz Term Designation Term Designation
000 x'y'z' mq x+y+z My
001 x'y'z my x+y+z' M,
010 x'yz' my x+y'+z M,
011 x'yz ms x +y' +z' M;
100 xy'z' my x' +y+z M,
101 xy'z ms x'+y+z' Ms
110 xyz' meg x' +y’ +z Mg
111 xyz maq x' +y' +z' My

each minterm is also shown in the table and is of the form m;, where j denotes
the decimal equivalent of the binary number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable
being primed or unprimed, provide 27 possible combinations, called
maxterms, or standard sums. The eight maxterms for three variables,
together with their symbolic designation, are listed in Table 2-3. Any 27
maxterms for n variables may be determined similarly. Each maxterm is
obtained from an OR term of the n variables, with each variable being

unprimed if the corresponding bit is a 0 and primed if a 1*. Note that each

*Some books define a maxterm as an OR term of the n variables, with each variable
being unprimed if the bit is a 1 and primed if a 0. The definition adopted in this
book is preferable as it leads to simpler conversions between maxterm and minterm
type functions.
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maxterm is the complement of its corresponding minterm and vice versa.

A Boolean function may be expressed algebraically from a given truth
table by forming a minterm for each combination of the variables which
produces a 1 in the function, and then taking the OR of all those terms.
For example, the function f; in Table 2-4 is determined by expressing the
combinations 001, 100, and 111 as x'y'z, xy'z’, and xyz, respectively. Since
each one of these minterms results in f; = 1, we should have

fi=xYz+xyz txyz=my + my + my

Similarly, it may be easily verified that
fr =x'yz+xy'z + xpz’ + xyz =ms + ms + mg + My
These examples demonstrate an important property of Boolean algebra: any
Boolean function can be expressed as a sum of minterms (by “sum” is
meant the ORing of terms).
Now consider the complement of a Boolean function. It may be read
from the truth table by forming a minterm for each combination that

produces a 0 in the function and then ORing those terms. The complement
of f1 is read as:

1

fi=xY2 +x'yz' + x'vz + xp'z + xpz
If we take the complement of f;, we obtain the function f;:

fi=@+y+2)(x+y +2)(x+y +2) (X +y+2)(x' +y' +2)
=My - My, - M5 + Ms + Mg

Table 2-4 Functions of Three Variables

Function fy Function f,

=
~<
N

OO OO
-0 O M= OO

-0 OO ~=O
—-OoO O OQOmO
—— O = OO0 0O
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Similarly, it is possible to read the expression for f, from the table:
frety+)(xty+2)(x+y +2) (' +y +2)
= Mo Ml M, M4

These examples demonstrate a second important property of Boolean
algebra: any Boolean function can be expressed as a product of maxterms
(by “product” is meant the ANDing of terms). The procedure for obtaining
the product of maxterms directly from the truth table is as follows. Form a
maxterm for each combination of the variables which produces a 0 in the
function, and then form the AND of all those maxterms. Boolean functions
expressed as sum of minterms or product of maxterms are said to be in
canonical form.

Sum of Minterms

It was previously stated that for n binary variables, one can obtain 27
distinct minterms, and that any Boolean function can be expressed as a sum
of minterms. The minterms whose sum defines the Boolean function are
those that give the 1’s of the function in a truth table. Since the function
can be either 1 or O for each minterm, and since there are 27 minterms,
one can calculate the possible functions that can be formed with n variables
to be 22", It is sometimes convenient to express the Boolean function in
its sum of minterms form. If not in this form, it can be made so by first
expanding the expression into a sum of AND terms. Each term is then
inspected to see if it contains all the variables. If it misses one or more
variables, it is ANDed with an expression like x + x', where x is one of the
missing variables. The following example clarifies this procedure.

EXAMPLE 2-4. Express the Boolean function F = A + B'C in a sum of
minterms. The function has three variables 4, B, and C. The first term A is
missing two variables, therefore:

A=AB + B')=AB + AB’
This is still missing one variable:

A=AB(C+ C') + AB'(C + C') = ABC + ABC' + AB'C + AB'C’
The second term B'C is missing one variable:

B'C=BC(A +A4")=AB'C+ A'B'C
Combining all terms we have:

F=A+B'C=ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C
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But AB'C appears twice and according to theorem 1 (x + x = Xx), it is
possible to remove one of them. Rearranging the minterms in ascending
order, we finally obtain:

F=A'B'C+ABC' '+ AB'C+ABC' + ABC=m, + ms + ms + mg + m,

It is sometimes convenient to express the Boolean function, when in its
sum of minterms, in the following short notation:

F(4, B C)=3(1,4,5 6,7

The summation symbol T stands for the ORing of terms; the numbers
following it are the minterms of the function. The letters in parentheses
with F form a list of the variables in the order taken when the minterm is
converted to an AND term.

Product of Maxterms

Each of the 22" functions of n binary variables can be also expressed as
a product of maxterms. To express the Boolean function as a product of
maxterms it must first be brought into a form of OR terms. This may be
done by using the distributive law x + yz = (x + y) (x + z). Then any
missing variable x in each OR term is ORed with xx’. This procedure is
clarified by the following example.

EXAMPLE 2-5. Express the Boolean function F = xy + xz in a product
of maxterm form.
First convert the function into OR terms using the distributive law:

F=xy+xz=(y+x)(y+2)
=(x+x)@p+x)x+2)(+2)
=(x'+y)(x+2) (v +2)
The function has three variables: x, y, and z. Each OR term is missing one
variable, therefore:
X +y=x+ty+zz=x +y+t2) (' +y+7)
xtz=xt+tz+ryy' =(x+y+z)(x+y +2)
ytz=ytz+xx'=(x+y+2)(x' +y+2)

Combining all the terms and removing those that appear more than once,
we finally obtain:

F=(xt+ty+)(x+y +2 & +y+2) ' +y+7)
= Mo M'Z M4 Ms
A convenient way to express this function is as follows:

F(x,y,2)=1(0,2,4,5)
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The product symbol denotes the ANDing of maxterms; the numbers are the
maxterms of the function.

Conversion Between Canonical Forms

The complement of a function expressed as the sum of minterms equals
the sum of minterms missing from the original function. This is because the
original function is expressed by those minterms that make the function
equal to 1, while its complement is a 1 for those minterms that the
function is a 0. As an example, the function

F(4, B C)=32(1,4,5,6,7)

has a complement that can be expressed as
F (A4, B, C)=%2(0,2,3)=my +my +my

Now, if we take the complement of F' by De Morgan’s theorem we obtain
F back in a different form:

F=(mg +my +my) =mg - my - ms=My My My = T1(0, 2, 3)

The last conversion follows from the definition of minterms and maxterms
as shown in Table 2-3. From the table, it is clear that the following relation
holds true:

That is, the maxterm with subscript j is a complement of the minterm with
the same subscript j, and vice versa.

The last example has demonstrated the conversion between a function
expressed in sum of minterms and its equivalent in product of maxterms. A
similar argument will show that the conversion between the product of
maxterms and the sum of minterms is similar. We now state a general
conversion procedure. To convert from one canonical form to another,
interchange the symbol X and II and list those numbers missing from the
original form. As another example, the function

Fx p2)=1(0,2, 4,5

is expressed in the product of maxterm form. Its conversion to sum of
minterms is:

Fx, 92)=2(,3,6,7)

Note that in order to find the missing terms, one must realize that the
total number of minterms or maxterms is 27, where n is the number of
binary variables in the function.
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Standard Forms

The two canonical forms of Boolean algebra are basic forms that one
obtains from reading a function from the truth table. These forms are very
seldom the ones with the least number of literals. This is because each
minterm or maxterm must contain, by definition, all the variables either
primed or unprimed. A Boolean function expressed with terms containing
any number of literals is said to be in a standard form. There are two
standard forms: The sum of products (disjunctive form) and the product of
sums (conjunctive form). An example of a function expressed in a sum of
products is:

Fy=xy +xyz’ +)

The product terms are AND terms of one, two, or any number of literals.
The sum denotes the ORing of these terms. An example of a function
expressed in a product of sums is:

F2=x(y'+z)(x'+y+z')

Again, the sum terms are OR terms of one or more variables and the
product denotes the ANDing of these terms.

26 OTHER BINARY OPERATORS

When the binary operators AND and OR are placed between two variables,
they form two Boolean functions, x * y and x + y, respectively. We have
stated previously that there are 22" functions for n variables. Therefore, these
functions are only two out of a total of sixteen possible functions formed
with two variables x and y. All 16 functions are listed in Table 2-5. In this
table, each of the columns represents the truth table of one function F] for
j = 0 to 15. Some of the functions are shown with an operator symbol and
are also known by a characteristic name as indicated below. The following list
of 16 functions is expressed algebraically. When applicable, the function is
also written with its special symbol and its characteristic name mentioned.

Table 2-5 Truth Tables for the Sixteen Functions of Two Binary Variables

x v |Fo|F1|Fo| F3 |Fa |Fs|Fs|Fq|Fg|Fo|Fi0 |F11|F12 [F13|F1a| F1s
0 0[O0 ][O 010 0J]0]0{O 1 (1 1 1 1 1 1 1
0 11010 0|0 111 1 1 01}0 0 0 1 1 1 1
1 0(0}o0 1(1 010 1 1 oo 1 1 0 0 1 1
1 1]0]|1 0]1 0|1 0 1 01 0 1 0 1 0 1
Operator

Symbol <1y / o+ dfje]’ JC |’ > |1
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Fy=0 zero, or null function
Fi=x-*y . AND x and y
Fy=xy' =x[y INHIBITION,  x but not y
Fy=x the function is equal to x
Fy =Xy = y/x INHIBITION,  y but not x
Fg =y the function is equal to y
Fg=x'y + xy' =x @ y EXCLUSIVE-OR x or y but not both
F=x+y OR xory
Fg=(x+y)=x1y NOR not-or
Fyg =x'y' +xy =x®y EQUIVALENCE x equalsy
Fio =) COMPLEMENT noty
Fj; =x+y =x Cy IMPLICATION ify thenx
Fiy =x' COMPLEMENT  not x
Fi3=x'+y=x Dy  IMPLICATION if x then y
Fig=0py) =x1y NAND not-and
Fis=1 one, or identity function

By checking Table 2-5 and the list of functions we see that the 16
functions of two variables define a total of eight different binary operators
and one unary operator. The binary operators are: AND (-), INHIBITION
(/), EXCLUSIVE-OR (@), OR (+), NOR ({), EQUIVALENCE (®), IMPLI-
CATION (D), and NAND (1). The unary operator is the COMPLEMENT
("). The AND, OR, and COMPLEMENT operators have been used pre-
viously to define Boolean algebra. Four other functions have frequent use in
computer logic. The EXCLUSIVE-OR is similar to OR but excludes the
combination of both x and y. The EQUIVALENCE is a function that is a
1 when both variables are equal. Note that the EXCLUSIVE-OR and
EQUIVALENCE functions are the complement of each other. The NOR
function is the complement of OR, and the NAND is the complement of
AND. Both these functions are of particular interest because of the frequent
use of transistor circuits that implement these functions (see Ch. 5).

Boolean algebra has been defined in Sec. 2-2 to have two binary
operators which we have called AND and OR and a unary operator NOT
(complement). From the definitions, we have deduced a number of prop-
erties of these operators and now have defined other binary operators in
terms of them. There is nothing unique about this procedure. We could
have just as well started with the operator NOR (1), for example, and later
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defined AND, OR, and NOT in terms of it. There are, nevertheless, good
reasons for introducing Boolean algebra in the way it has been introduced.
The concepts of “and,” ‘“‘or,” and “not” are familiar and are used by
people to express everyday logical ideas. Moreover, the Huntington postu-
lates reflect the dual nature of the algebra, emphasizing the symmetry of
(+) and (*) with respect to each other.

33

PROBLEMS

2-1. Which of the six basic laws (closure, associative, commutative, identity,
inverse, and distributive) are satisfied for the pair of binary operators
listed below?

+]0 1 2 -]lo1 2
0o]Jooo olo1 2
1011 112
201 2 21222

2-2. Show that the set of three elements {0, 1, 2} and the two binary
operators + and °* as defined by the above table is not a Boolean
algebra. State which of the Huntington postulates is not satisfied.

2-3. Demonstrate by means of truth tables the validity of the following
theorems of Boolean algebra.

(a) The associative laws.
(b) De Morgan’s theorems for three variables.
(c) The distributive law of + over -.

2-4. Repeat Prob. 2-3 using Venn diagrams.

2-5. Simplify the following Boolean functions to a minimum number of
* literals.

(@ xy+xy

(b) (x + y)x + )

(¢} xyz +x'y + xyz'
@ zx + zx'y

() 4+B) A4 +BY
) ywz' + wz) + xp

2-6. Reduce the following Boolean expression to the required number of

literals.

(@) ABC+A'B'C + A'BC + ABC' + A'B'C to five literals
(b) BC + AC' + AB + BCD to four literals
(c) [(CD) + A1' + A + CD + AB to three literals

@ U+C+D)YA+C+DYUA+C +D)(4+B) to four literals
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2-7.

2-8.

2-9.
2-10.

2-12.

2-13.

Find the complement of the following Boolean functions and reduce
them to a minimum number of literals.

(a) (BC' + 4'D) (4B’ + CD")

(b) B'D + A'BC' + ACD + A'BC

(c) ((4B)'4] [(4B)'B]

(d) AB' + C'D' + A'CD' + DC'(AB + A'B") + DB(AC' + A'C)

Given the functions below determine the functions F; +G, and F, +
G2 and reduce them to a minimum number of literals.

(@) F1 =D + ABC' + A'C
Gy =D'A'+B +0) U+
(b) Fy = AB' + A'B' + C'D + 4'CD’
Gy=C+ A'B'C'+ AB'C' + BC'D'
Obtain the truth table for F; + G; and F, + G, of Prob. 2-8.

Implement the simplified Boolean functions from Prob. 2-6 with logic
gates.

. Given the Boolean function:

F=xy+x'y' +y'z

(a) Implement it with AND, OR, and NOT gates.

(b) Implement it with only OR and NOT gates.

(c) Implement it with only AND and NOT gates.

Simplify the functions T; and T 7 to a minimum number of literals.
A B C |T T,

1

- OO OO

—_0 =~ 0O ~OQO~=0
CODO O = ==
et et et O DO

Express the following functions in a sum of minterms and a product of
maxterms.

(a) F(4, B, C,D) = D(4" + B) + B'D

®) Flw, x,y,2) =p'z + wxy' + wxz' + w'x'z

(c) F(A,B,C,D)=(A+B +C)A+B)YUA+C +D)
4" +B+C+DYB+C +D)

d) F(4,B,C0) =4+ B) B + O

() F(x,y,z) =1

® Flx,y,2) =(xy +2) (v + x2)
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2-14. Convert the following to the other canonical form.

(@) F(x, y,2) = 2(1,3,7

(b) F(4, B, C, D) = 2(0,2,6,11,13, 14)
(c) F(x, y,z) =1(0,3,6,7)

(d) F4,B,C,D) =110, 1, 2, 3,4, 6, 12)

2-15. What is the difference between canonical form and standard form? Which

form is preferable when implementing a Boolean function with gates?
Which form is obtained when reading a function from a truth table?

2-16. The sum of all minterms of a Boolean function of n variablesis 1.

(a) Prove the above statement for n = 3.

(b) Suggest a procedure for a general proof.

2-17. The product of all maxterms of a Boolean function of n variables is 0.

(a) Prove the above statement for n = 3.

(b) Suggest a procedure for a general proof. Can we use the duality
principle after proving (b) of Prob. 2-16?

2-18. Show that the INHIBITION operation’ is not commutative.
2-19. Show that the NOR and NAND operations are not associative.
2-20. Show that the dual of the EXCLUSIVE-OR is equal to its complement.
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SIMPLIFICATION OF
3 BOOLEAN FUNCTIONS

3-1 THE MAP METHOD

The complexity of the digital logic gates that implement a Boolean function
is directly related to the complexity of the algebraic expression from which
the function is implemented. Although the truth-table representation of a
function is unique, expressed algebraically, it can appear in many different
forms. Boolean functions may be simplified by algebraic means as discussed
in Sec. 2-4. However, this procedure of minimization is awkward because it
lacks specific rules to predict each succeeding step in the manipulative
process. The map method provides a simple straightforward procedure for
minimizing Boolean functions. This method may be regarded either as a
pictorial form of a truth table or as an extension of the Venn diagram. The
map method, first proposed by Veitch (1) and slightly modified by Kar-
naugh (2), is also known as the “Veitch diagram” or the “Karnaugh map.”

The map is a diagram made up of squares. Each square represents one
minterm. Since any Boolean function can be expressed as a sum of min-
terms, it follows that a Boolean function is recognized graphically in the
map from the area enclosed by those squares whose minterms are included
in the function. In fact, the map presents a visual diagram of all possible
ways a function may be expressed in a standard form. By recognizing
various patterns, the user can derive alternate algebraic expressions for the
same function, from which he can select the simplest one. We shall assume
that the simplest algebraic expression is any one in a sum of products or
product of sums that has a minimum number of literals. (This expression is
not necessarily unique.)

57
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3-2 TWO- AND THREE-VARIABLE MAPS

A two-variable map is shown in Fig. 3-1. There are four minterms for two
variables, hence the map consists of four squares, one for each minterm.
The map is redrawn in(b) to show the relation between the squares and
the two variables. The 0’s and 1’s marked for each row and each column
designate the value of variable x and y respectively. Notice that x appears
primed in row O and unprimed in row 1. Similarly, y appears primed in column 0
and unprimed in column 1.

N\ o AT
my | m 0} xy | xy
m, my x {1 xy’ xy

(a) (b)

Figure 3-1 Two-variable map

If we mark the squares whose minterms belong to a given function, the
two-variable map becomes another useful way for representing any one of
the 16 Boolean functions of two variables. As an example, the function xy
is shown in Fig. 3-2(a). Since xy is equal to mj3, a 1 is placed inside the
square that belongs to mj;. Similarly, the function x + y is represented in
the map of Fig. 3-2(b) by three squares marked with 1’s. These squares are
found from the minterms of the function:

x+y=xy+xy +xy=m +tm +m

The three squares could have also been determined from the intersection of
variable x in the second row and variable y in the second column, which
encloses the area belonging to x or y.

y y
y X y :
x 0 1 x 0 1
0 0 1
x{l 1 x{l 1 1
(a) =xy (b) x+vy

Figure 3-2 Representation of functions in the map
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A three-variable map is shown in Fig. 3-3. There are eight minterms for
three binary variables. Therefore, a map consists of eight squares. Note that
the minterms are arranged, not in a binary sequence, but in a sequence
similar to the reflected code listed in Table 1-4. The characteristic of this
sequence is that only one bit changes from 1 to O or from O to 1 in the
listing sequence. The map drawn in part (b) is marked with numbers in
each row and each column to show the relation between the squares and
the three variables. For example, the square assigned to ms corresponds to
row 1 and column 01. When these two numbers are concatenated, they give
the binary number 101, whose decimal equivalent is 5. Another way of
looking at square ms = xy'z is to consider it to be in the row marked x
and the column belonging to y'z (column 01). Note that there are four
squares where each variable is equal to 1 and four where each is equal to
0. The variable appears unprimed in those four squares that it is equal to 1
and primed in those squares that it is equal to 0. For conyenience, we
write the variable with its letter symbol under the four squares where it is
unprimed.

In order to understand the usefulness of the map for simplifying Boolean
functions, we must recognize the basic property possessed by adjacent
squares. Any two adjacent squares in the map differ by only one variable
which is primed in one square and unprimed in the other. For example, ms
and m, lie in two adjacent squares. Variable y is primed in ms and

yz y
e A e
x\ 00 01 11 10
my | m | my | om, 0| xyZ| xXyz| x'yz | x'yz’
my | mg| mgy| mg .x{l xy'Z | xy'z | xyz | xyz’
————
z
(a) (b)

Figure 3-3 Three-variable map

unprimed in m,, while the other two variables are the same in both
squares. From the postulates of Boolean algebra, it follows that the sum of
two minterms in adjacent squares can be simplified to a single AND term
consisting of only two literals. To clarify this, consider the sum of two
adjacent squares such as mjs and m,.

ms + mg =xy'z txyz=xz(y' ty)=xz

Here the two squares differ by the variable y, which can be removed when
the sum of the two minterms is formed. Thus any two minterms in
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adjacent squares that are ORed together will cause a removal of the
different variable. The following example explains the procedure to be used
when minimizing a Boolean function with a map.

EXAMPLE 3-1. Simplify the Boolean function
F=x'yz + x'yz' + xy'z’ +xy'z

First, a 1 is marked in each square as needed to represent the function as
shown in Fig. 3-44. This can be accomplished in two ways: either by
converting each minterm to a binary number and then marking a 1 in the
corresponding square, or by obtaining the coincidence of the variables in
each term. For example, the term x'yz has the corresponding binary
number 011 and represents minterm mj5 in square 011. The second way of
recognizing the square is by the coincidence of variables x', y, and z, which
is found in the map by observing that x' belongs to the four squares in the first
row, y belongs to the four squares in the two right columns, and z belongs to
the four squares in the two middle columns. The area that belongs to
all three literals is the single square in the first row and third column. In a
similar manner, the other three squares belonging to the function F are
marked by 1’s in the map. The function is thus represented by an area
containing four squares, each marked with a 1 as shown in Fig. 34. The
next step is to subdivide the given area into adjacent squares. These are
indicated in the map by two rectangles, each enclosing two 1°s. The upper
right rectangle represents the area enclosed by x'y; the lower left, the area
enclosed by xy'. The sum of these two terms gives the answer

F=x'y +xy

Next consider the two squares labeled m, and m, in Fig. 3-3(a) or
x'y'z" and x'yz' in Fig. 3-3(b). These two minterms also differ by one
variable ¥ and their sum can be simplified to a two-literal expression:

x'ylzl + x'yzf = x!zl

yz I

* 00 o1 11 10

0 Y
x{l Ol

[

Figure 3-4 Map for Ex’ample 3-1; x'yz + x'yz’ + xy'z + xy'z
=x'y +xy
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Consequently, we must modify the definition of adjacent squares to include
this and other similar cases. This is done by considering the map as being
drawn on a surface where the right and left edges touch each other to form
adjacent squares.

EXAMPLE 3-2. Simplify the Boolean function
F=Xx'yz + xy'z" + xyz + xyz’

The map for this function is shown in Fig. 3-5. There are four squares
marked with 1’s, one for each minterm of the function. Two adjacent
squares are combined in the third column to give a two-literal term yz. The

yz oy
x 00 01 11 10
o ]
,{1 ] 1| [T
—

4

Figure 3-5 Map for Example 3-2; x'yz + xy'z' + xyz + xyz'
=yz + xz'

remaining two squares with 1’s are also adjacent by the new definition and
are shown in the diagram enclosed by half rectangles. These two squares
when combined give the two-literal term xz'. The simplified function
becomes

F=yz +xz

Consider now any combination of four adjacent squares in the three-
variable map. Any such combination represents the ORing of four adjacent
minterms and results in an expression of only one literal. As an example,
the sum of the four adjacent minterms my, m,, M4, and mg reduces to the
single literal z' as shown:

x'ylzl + xlyzl + xylzl + xyzl = xlzl 0)' + y) + le (yl + y)

Xz +xz =2 (x +x)=2
EXAMPLE 3-3. Simplify the Boolean function
F=A'C+AB +AB'C + BC

The map to simplify this function is shown in Fig. 3-6. Some of the terms
in the function have less than three literals and are represented in the map
by more than one square. For example, to find the squares corresponding
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BC
A_00 01 " 11 10
—
0 1 [ 1] 1
A[l 1 1
-

c
Figure 36 Map for Example 3-3; A'C + A'B + AB'C + BC =C + A'B

to A'C, we form the coincidence of A’ (first row) and C (two middle
columns) and obtain squares 001 and O11. Note that when marking 1’s in
the squares, it is possible to find a 1 already placed there by a preceding
term. In this example, the second term A'B has 1’s in squares 011 and
010, but square 011 is common to the first term A'C and only one 1 is
marked in it. The function in this example has five minterms, as indicated
by the five squares marked with 1’s. It is simplified by combining four
squares in the center to give the literal C. The remaining single square
marked with a 1 in 010 is combined with an adjacent square that has
already been used once. This is permissible and even desirable since the
combination of the two squares gives the term A’'B while the single min-
term represented by the square gives the three-variable term A'BC’. The
simplified function is

F=C+A4B
EXAMPLE 3-4. Simplify the Boolean function
F(x,y,27=2(0,2,4,5, 6)
Here we are given the minterms by their decimal numbers. The corre-

sponding squares are marked by 1’s as shown in Fig. 3-7. From the map
we obtain the simplified function

F=z +x

yz P S
x_00 01 _11_ 0

x{l [1 1] t

|
Z

Figure 3-7 f(x,y,z) = £ (0,2,4,5,6) = z’' + xy’
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3-3 FOUR-VARIABLE MAP

The map for Boolean functions of four binary variables is shown in
Fig. 3-8. In part (a) are listed the 16 minterms and the squares assigned to
each. In (b) the map is redrawn to show the relation with the four
variables. The rows and columns are numbered in a reflected code sequence
with only one digit changing value between two adjacent rows or columns.
The minterm corresponding to each square can be obtained from the
concatenation of the row number with the column number. For example,
the number of the third row (11) and the second column (01), when
concatenated, give the binary number 1101, the binary equivalent of dec-
imal 13. Thus, the square in the third row and second column represents
minterm m, 3.

The map minimization of four-variable Boolean functions is similar to the
method used to minimize three-variable functions. Adjacent squares are
defined to be squares next to each other. In addition, the map is con-
sidered to lie on a surface with the top and bottom edges, as well as the
right and left edges, touching each other to form adjacent squares. For
example, mo and m, form adjacent squares, as do m3 and m,;. The
combination of adjacent squares that is useful during the simplification process
is easily determined from inspection of the four-variable map:

One square represents one minterm, giving a term of four literals.
Two adjacent squares represent a term of three literals.

Four adjacent squares represent a term of two literals.

Eight adjacent squares represent a term of one literal.

Sixteen adjacent squares represent the function equal to 1.

ye X
wx\_00 01 11 10
my |\ m | my |l om, 00|wx'yZ [wx'y'z|w'x'yz|w'x'yz'|
myl mg | my | mg o1wxy Ziw'xy'zy wxyz|w'xyz’
x
mo| M| mis| M 11|wxy’z | wxy'z| wxyz | wxyz'
w
mg | Mg | M| My 10|WX'}"Z+WX'y’Z wx'yz|wx'yz
-
(a) (b) z

Figure 3-8 Four-variable map
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No other combination of squares can simplify the function. The following
two examples show the procedure used to simplify four-variable Boolean
functions.

EXAMPLE 3-5. Simplify the Boolean function
Fwx 2 =2(0,1,2,4,5,6,8,9, 12, 13, 14)

Since the function has four variables, a four-variable map must be used. The
minterms listed in the sum are marked by 1’s in the map of Fig. 3-9. Eight
adjacent squares marked with 1’s can be combined to form the one literal
term y'. The remaining three 1’s on the right cannot be combined together
to give a simplified term. They must be combined as two or four adjacent
squares. The larger the number of squares combined, the less the number of
literals in the term. In this example, the top two 1’s on the right are
combined with the top two 1’s on the left to give the term w'z’. Note that
it is permissible to use the same square more than once. We are now left
with a square marked by 1 in the third row and fourth column (square
1110). Instead of taking this square alone (which will give a term of four
literals), we combine it with squares already used to form an area of four
adjacent squares. These squares comprise the two middle rows and the two
end, columns, giving the term xz'. The simplified function is

F = yl + wIZI + XZ’
EXAMPLE 3-6. Simplify the Boolean function
F=A'B'C' + BCD' + A'BCD' + AB'C'

yz X
weeQ0 01 "1 10
W[ :]] ][
1
ol [1]]] 1 1

X
11J1 |1
w
01 |1
-

Figure 3-9 Map for Example 3-5; F(w,x,»,z) = £(0,1,2,4,5,6,8,9,12,13,
14) = y' + w7+ xz
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The area in the map covered by this function consists of the squares
marked with 1’s in Fig. 3-10. This function has four variables and, as
expressed, consists of three terms, each with three literals, and one term of
four literals. Each term of three literals is represented in the map by two
squares. For example, A'B'C’ is represented in squares 0000 and 0001. The
function can be simplified in the map by taking the 1’s in the four corners
to give the term B'D'. This is possible because these four squares are
adjacent when the map is drawn in a surface with top and bottom or left
and right edges touching one another. The two left-hand 1’s in the top row
are combined with the two 1’s in the bottom row to give the term B'C’.
The remaining 1 may be combined in a two-square area to give the term
A'CD'. The simplified function is

F=BD +BC +ACD

cD <
AB_00 01 —11 10

oof (1] 1] |1!
o1 1
B
11
A
loil' 1) ll
—— et
D

Figure 3-10 Map for Example 3-6 ABC + B'cD' + A'BCD' + AB'C’
=B'D +B'C' +A'cD’

34 FIVE- AND SIX-VARIABLE MAPS

Maps of more than four variables are not as simple to use. The number of
squares becomes excessively large and the geometry for combining adjacent
squares becomes more involved. The number of squares is always equal to
the number of minterms. For five-variable maps, we need 32 squares; for
six-variable maps, we need 64 squares. Maps with seven or more variables
need too many squares. They are impractical to use. The five- and six-
variable maps are shown in Figs. 3-11 and 3-12, respectively. The rows and
columns are numbered in a reflected code sequence; the minterm assigned
to each square is read from these numbers. In this way, the square in the
third row (11) and second column (001), in the five-variable map, is
number 11001, the equivalent of decimal 25. Therefore, this square
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CDE ¢
4B_000 001 011 010 110 11l 101 100
ool o [ 1| 3] 2 6 | 7| 5| 4

01 8 9 11 10 14 15 13 12

B
1} 24 | 25 | 27 | 26 30 31 | 29 | 28
A
10 16 17 19 18 22 23 21 20
N D NI
E E
Figure 3-11 Five-variable map
DEF D
ABc, 000 001 011 010 110 111 101 100
000} o 1 3 2 [3 7 5 4
001} 8 9 11 10 14 | 15 13 12
C
O11] 24 | 25 | 27 | 26 30 31 | 29 | 28
010{ 16 17 | 19 18 22 | 23 | 21 | 20
B

110{ 48 | 49 51 50 54 55 53 | 52

111| 56 57 59 | 58 62 63 61 60

101 40 | 41 | 43 | 42 || 46 [ 47 | 45 | 44

100) 32 | 33 35 34 38 39 | 37 36

[ — [ —
F F

Figure 3-12 Six-variable map

represents minterm m, 5. The letter symbol of each variable is marked along
those squares where the corresponding bit value of the reflected code
number is a 1. For example, in the five-variable map, the variable 4 is a 1
in the last two rows; B is a 1 in the middle two rows. The reflected
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numbers in the columns show variable C with a 1 in the rightmost four
columns, variable D with a 1 in the middle four columns, and the 1’s for
variable E not physically adjacent but split in two parts. The variable
assignment in the six-variable map is determined similarly.

The definition of adjacent squares for the maps of Figs. 3-11 and 3-12
must be modified again to take into account the fact that some variables
are split in two parts. The five-variable map must be thought to consist of
two four-variable maps, and the six-variable map to consist of four four-
variable maps. Each of these four-variable maps is recognized from the
double lines in the center of the map: each retains the previously defined
adjacency when taken individually. In addition, the center double line must
be considered as the center of a book, with each half of the map being a
page. When the book is closed, two adjacent squares will fall one in each
other. In other words, the center double line is like a mirror with each
square being adjacent, not only to its four neighboring squares, but also to
its mirror image. For example, minterm 31 in the five-variable map is
adjacent to minterms 30, 15, 29, 23, and 27. The same minterm in the
six-variable map is adjacent to all these minterms plus minterm 63.

From inspection, and taking into account the new definition of adjacent
squares, it is possible to show that any 2k adjacent squares, for k = 0, 1,
2, ..., n, in an n-variable map, will represent an area that gives a term of
n — k literals. For the above statement to have any meaning, n must be
larger than k. When n = k, the entire area of the map is combined to give
the identity function. Table 3-1 shows the relation between the number
of adjacent squares and the number of literals in the term. For example,
eight adjacent squares combine an area in the five-variable map to give a term
of two literals.

Table 3-1. The Relation between the Number of Adjacent Squares and the
Number of Literals in the Term

Number

a dja(zfe nt Number of literals in a term in an n-variable map

squares
k 2k n=2 n=3 n=4 n=5 n=6 n=1
0 1 2 3 4 5 6 7
1 2 1 2 3 4 5 6
2 4 0 1 2 3 4 5
3 8 0 1 2 3 4
4 16 0 1 2 3
5 32 0 1 2
6 64 0 1
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EXAMPLE 3-7. Simplify the Boolean function
F(A4,B,C D, FE)=20,2,4,6,9,11, 13,15, 17, 21, 25, 27, 29, 31)

The five-variable map of this function is shown in Fig. 3-13. Each
minterm is converted to its equivalent binary number and the I’s are
marked in their corresponding squares. It is now necessary to find combina-
tions of adjacent squares that will result in the largest possible area. The
four squares in the center of the right-half map are reflected across the
double line and are combined with the four squares in the center of the
left-half map to give eight allowable adjacent squares equivalent to the term
BE. The two 1’s in the bottom row are the reflection of each other about
the center double line. By combining them with the other two adjacent
squares, the term AD'E is obtained. The four 1’s in the top row are all
adjacent and can be combined to give the term A'B'E’. All the 1’s are now
included. The simplified function is

F = BE + AD'E + A'B'F'

CDE c
4p 000 001 011 010 "Ti0 _1i1 101 100
oo| 1] [1 1| [1
o1 1 1 1 |1
B
11 1 1 1 |1
4
10 1 1
N D -
E E

Figure 3-13 Map for Example 3-7; F(A,B,C,D,E,') = 2§0}2,4,6,9,11,13,
15,17,21,25,27,29,31) = BE + AD'E + A'BE'

35 PRODUCT OF SUMS SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous
examples were expressed in the sum of products form. With a minor
modification, the product of sums form can be obtained.

The procedure for obtaining a minimized function in product of sums
follows from the basic properties of Boolean functions. The 1’s placed in
the squares of the map represent the minterms of the function. The
minterms not included in the function denote the complement of the
function. From this we see that the complement of a function is repre-
sented in the map by the squares not marked by 1I’s. If we mark the
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empty squares by 0’s and combine them into valid adjacent squares, we
shall obtain a simplified expression of the complement of the function; i.e.,
of F'. The complement of F' gives us back the function F. Because of the
generalized De Morgan’s theorem, the function so obtained is automatically
in the product of sums form. The best way to show this is by example.

EXAMPLE 3-8. Simplify the following Boolean function in (a) sum of
products and (b) product of sums.

F(4, B CD)=2(0,1,2,5,8,9, 10)

The 1’s marked in the map of Fig. 3-14 represent all the minterms of the
function. The squares marked with Qs represent the minterms not included
in F, and therefore, denote the complement of F. Combining the squares
with 1’s gives the simplified function in sum of products:
(@ F=BD +BC +ACD
If the squares marked with O’s are combined, as shown in the diagram, one
obtains the simplified complemented function:

F' = AB + CD + BD'

Applying De Morgan’s theorem (by taking the dual and complementing each
literal as described in Sec. 24), we obtain the simplified function in
product of sums:

(b) F=(4"+B)(C +D) (B +D)

CcD (o
4p 00 01 11 10

00| 1 1 0 1

D

Figure 3-14 Map for Example 38 F(AB CD) = 2(0 1,4,5 8 ,9,10)
B'D' +B'C’ +4'c’'p =@ + B« +D"Y 8 +D)

The implementation of the simplified expressions obtained in Ex. 3-8 is
shown in Fig. 3-15. The sum of products expression is implemented in
(a) with a group of AND gates, one for each AND term. The outputs of
the AND gates are connected to the inputs of a single OR gate. The same
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B, J AI
D’ B)-—-‘
B e N S .
C’ / _{/ D
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(a) F=B'D'+B'C'+ACD (b) F=A'+B)(C'+D)B + D)

Figure 3-15 Gate implementation of the function of Example 3-8

function is implemented in (b) in its product.of sums form with a group of
OR gates, one for each OR term. The outputs of the OR gates are
connected to the inputs of a single AND gate. In each case it is assumed
that the input variables are directly available in their complement so inverters
are not needed. The configuration pattern established in Fig. 3-15 is the
general form by which any Boolean function is implemented when
expressed in one of the standard forms. AND gates are connected to a
single OR gate when in sum of products; OR gates are connected to a
single AND gate when in product of sums. Either configuration forms two
levels of gates. Thus, the implementation of a function in a standard form
is said to be a two-level implementation.

Example 3-8 has shown the procedure for obtaining the product of sums
simplification when the function is originally expressed in the sum of
minterms canonical form. The procedure is also valid when the function is
originally expressed in the product of maxterm canonical form. Consider for
example the truth table that defines the function £ in Table 3-2. In sum of
minterms, this function is expressed as

F(x,y,2)=2(1,3,4,6)
Table 3-2 Truth Table of Function #

F

=
N

= e OO OO
—_—-O O OO <
—O s OO ~=O
O OmFREO~=O
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In product of maxterms, it is expressed as
F(x,y,2)=T1(0,2,5,7)

In other words, the 1’s of the function represent the minterms, while the
0’s represent the maxterms. The map for this function is drawn in
Fig. 3-16. One can start simplifying this function by first marking the 1’s
for each minterm that the function is a 1. The remaining squares are
marked by 0’s. If, on the other hand, the product of maxterms is initially
given, one can start marking O’s in those squares listed in the function; the
remaining squares are then marked by 1’s. Once the 1’s and 0’s are marked,
the function can be simplified in either one of the standard forms. For the
sum of products, we combine the 1’s to obtain

F=x'z +x7

For the product of sums, we combine the O’s to obtain the simplified
complemented function:

F'=xz +x'7
which shows that the exclusive-or function is the complement of the

equivalence function (Sec. 2-6). Taking the complement of F ', we obtain
the simplified function in product of sums

F=(x"+z)(x +2)

To enter a function expressed in product of sums in the map, take the
complement of the function and from it find the squares to be marked by
0’s. For example, the function

F=A+B +C) (B +D)
can be entered in the map by first taking its complement
F' = ABC' + B'D'

and then marking O’s in the squares representing the minterms of F' The
remaining squares are marked with 1’s.

yz y
00 o1 11 10

x{l 1 0 0 1

Figure 3-16 Map for the function of Table 3-2
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3-6 DON'T-CARE CONDITIONS

The 1’s and O’s in the map signify the combination of variables that makes
the function equal to 1 or O, respectively. The combinations are usually
obtained -from a truth table that lists the conditions under which the
function is a 1. The function is assumed equal to O under all other
conditions. This assumption is not always true since there are applica-
tions where certain combinations of input variables never occur. A four-bit
decimal code, for example, has six combinations which are not used. Any
digital circuit using this code operates under the assumption that these
unused combinations will never occur as long as the system is working
properly. As a result, we don’t care what the function output is to be for
these combinations of the variables because they are guaranteed never to
occur. These don’t-care conditions can be used on a map to provide further
simplification of the function.

It should be realized that a don’t-care combination cannot be marked
with a 1 on the map because it would require that the function always be
a 1 for such input combination. Likewise, putting a O in the square requires
the function to be 0. To distinguish the don’t-care conditions from 1’s and
0’s, an X will be used.

When choosing adjacent squares to simplify the function in the map, the
X’s may be assumed to be either O or 1, whichever gives the simplest
expression. In addition, an X need not be used at all if it does not
contribute to covering a larger area. In each case, the choice depends only
on the simplification that can be achieved.

EXAMPLE 3-9. Simplify the Boolean function
Fwx y2)=2(,3,7, 11, 15)
and the don’t-care conditions

dw, x,y,2)=2(0,2,595

The minterms of F are the variable combinations that make the function
equal to 1. The minterms of d are the don’t-care combinations known never
to occur. The minimization is shown in Fig. 3-17. The minterms of F are
marked by 1’s; those of d are marked by X’s; and the remaining squares
are filled with 0’s. In (a), the 1’s and X’s are combined in any convenient
manner so as to enclose the maximum number of adjacent squares. It is not
necessary to include all or any of the X’s, only those useful for simplifying
a term. One combination that gives a minimum function encloses one X
and leaves two out. This results in a simplified sum of products function

F=wz+yz
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(a) Combining I'sand X’s F = w'z +yz (b) Combining O’s and X’s F = z(w' +y)

Figure 3-17 Example with don’t-care conditions

In (b), the O0’s are combined with any X’s convenient to simplify the
complement of the function. The best results are obtained if we enclose the
two X’s as shown. The complement function is simplified to

F'=7 +w'

Complementing again, we obtain a simplified product of sums function
F=zW +y)

The two expressions obtained in Ex. 3-9 give two functions which can
be shown to be algebraically equal. This is not always the case when
don’t-care conditions are involved. As a matter of fact, if an X is used as a
1 when combining the 1’s and again as a 0 when combining the 0’s, the
two resulting functions will not yield algebraically equal answers. The
selection of the don’t-care condition as a 1 in the first case and as a 0 in
the second results in different minterm expressions and thus different
functions. This can be seen from Ex. 3-9. In the solution of this example,
the X chosen to be a 1 was not chosen to be a 0. Now, if in Fig. 3-17(a),
we choose the term w'x’ instead of w'z, we still obtain a minimized
function

F=wx"+yz

But it is not algebraically equal to the one obtained in product of sums
because the same X’s are used as 1’s in the first minimization and as 0’s in
the second.

This example also demonstrates that an expression with the minimum
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number of literals is not necessarily unique. Sometimes the designer is
confronted with a choice between two terms with an equal number of
literals, with either choice resulting in a minimized expression.

3-7 THE TABULATION METHOD

The map method of simplification is convenient as long as the number of
variables does not exceed five or six. As the number of variables increases,
the excessive number of squares prevents a reasonable selection of adjacent
squares. The obvious disadvantage of the map is that it is essentially a
trial-and-error procedure which relies on the ability of the human user to
recognize certain patterns. For functions of six or more variables, it is
difficult to be sure that the best selection has been made.

The tabulation method overcomes this difficulty. It is a specific step-by-
step procedure that guarantees to produce a simplified standard form
expression for a function. It can be applied to problems with many
variables and has the advantage of being suitable for machine computation.
However, it is quite tedious for human use and is prone to mistakes
because of its routine, monotonous process. The tabulation method was first
formulated by Quine (3) and later improved by McCluskey (4). 1t is also
known as the Quine-McCluskey method.

The tabular method of simplification consists of two parts. The first is to
find by an exhaustive search all the terms that are candidates for inclusion
in the simplified function. These terms are called prime-implicants. The
second operation is to choose among the prime-implicants those that give an
expression with the least number of literals.

3-8 DETERMINATION OF PRIME-IMPLICANTS

The starting point of the tabulation method is the list of minterms that
specify the function. The first tabular operation is to find the prime-
implicants by using a matching process. This process compares each minterm
with every other minterm. If two minterms differ in only one variable, that
variable is removed and a term with one less literal is found. This process is
repeated for every minterm until the exhaustive search is completed. The
matching process cycle is repeated for those new terms just found. Third
and further cycles are continued until a single pass through a cycle yields
no further elimination of literals. The remaining terms and all the terms
that did not match during the process comprise the prime-implicants. This
tabulation method is illustrated by the following example.
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EXAMPLE 3-10. Simplify the following Boolean function by using the
tabulation method:

F=3%(0,1,2 8,10, 11, 14, 15)

Step 1: Group binary representation of the minterms according to the
number of 1’s contained, as shown in Table 3-3, column (a). This is done
by grouping the minterms into five sections separated by horizontal lines.
The first section contains the number with no 1’s in it. The second section
contains those numbers that have only one 1. The third, fourth, and fifth
sections contain those binary numbers with two, three, and four I’s,
respectively. The decimal equivalents of the minterms are also carried along
for identification.

Step 2: Any two minterms which differ from each other by only one
_variable can be combined, and the unmatched variable removed. Two min-
term numbers fit in this category if they both have the same bit value in
all positions except one. The minterms in one section are compared with
those of the next section down only because two terms differing by more
than one bit cannot match. The minterm in ‘the first section is compared
with each of the three minterms in the second section. If any two numbers
are the same in every position but one, a check is placed to the right of
both minterms to show that they have been used. The resulting term,
together with the decimal equivalents, is listed in column (b) of the table.
The variable eliminated during the matching is remembered by inserting a

Table 3-3 Determination of Prime-Implicants for Example 3-10

{a) {b) (c)
wxyz wx yz WX yz
0 0000 0,1 000 — 0,2,8,10 -0-0
0,2 00-0 0,8,2,10 -0-0
1 0001 0,8 ~000 10,11,14,15 1 - 1 -
0010 10,14,11,15 1~ 1 —
8 1000+ 2,10 -010

8,10 10-0

10 1010V

LU LA L8 L&

10,11 101 —

11 10114 10,14 1 -10
14 1110

11,15 1-11

15 11114/ 14,15 111 -
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dash in its original position. In this case, m, (0000) combines with m,
(0001) to form (000-). This combination is equivalent to the algebraic
operation
me + my = wx'y'z + wix'y'z = wix'y'

Minterm m, also combines with m, to form (00-0) and with mg to form
(-000). The result of this comparison is entered into the first section of
column (b). The minterms of sections two and three of column (a) are next
compared to produce the terms listed in the second section of column (b).
All other sections of (a) are similarly compared and subsequent sections

formed in (b). This exhaustive comparing process results in the four sections
of (b).

Step 3: The terms of column (b) have only three variables. A 1 under the
variable means it is unprimed. A 0 means it is primed. And a dash means
the variable is not included in the term. The searching and comparing
process is repeated for the terms in column (b) to form the two-variable
terms of column (c). Again, terms in each section need to be compared
only if they have dashes in the same position. Note that the term (000-)
does not match with any other term. Therefore, it has no check mark on
its right. The decimal equivalents are written on the left-hand side of each
entry for identification purposes. The comparing process should be carried
out again in column (c) and subsequent columns as long as proper matching
is encountered. In the present example, the operation stops at the third
column.

Step 4: The unchecked terms in the table form the prime-implicants. In
this example we have the term w'x’y’ (000-) in column (b), and the terms
x'z'(-0-0) and wy (1-1-) in column (c). Note that each term in column (c)
appears twice in the table and as long as the term forms a prime-implicant,
it is unnecessary to use the same term twice. The sum of the prime-
implicants gives a simplified expression for the function. This is because
each checked term in the table has been taken into account by an entry of
a simpler term in a subsequent column. Therefore, the unchecked entries
(prime-implicants) are the terms left to formulate the function. For the
present example, the sum of prime-implicants gives the minimized function
in sum of products:

F=wx"y +x'2 +wy
It is worth comparing this answer with that obtained by the map
method. Figure 3-18 shows the map simplification of this function. The
combinations of adjacent squares give the three prime-implicants of the

function. The sum of these three terms is the simplified expression in sum
of products.
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Figure 3-18 Map for the function of Example’ 3-10; F = w'x'y'
+x'7 + wy

It is important to point out that Ex. 3-10 was purposely chosen to give
the simplified function from the sum of prime-implicants. In most other
cases, the sum of prime-implicants does not necessarily form the expression
with the minimum number of terms. This is demonstrated in Ex. 3-11.

The tedious manipulation that one must undergo when using the tabula-
tion method is reduced if the comparing is done with decimal numbers
instead of binary. A method will now be shown that uses subtraction of
decimal numbers instead of the comparing and matching of binary numbers. We
note that each 1 in a binary number represents the coefficient multiplied
by a power of two. When two minterms are the same in every position
except one, the minterm with the extra 1 must be larger than the number
of the other minterm by a power of two. Therefore, two minterms can be
combined if the number of the first minterm differs by a power of two
from a second larger number in the next section down the table. We shall
illustrate this procedure by repeating Ex. 3-10. .

As shown in Table 34, column (a), the minterms are arranged in
sections as before except that now only the decimal equivalents of the
minterms are listed. The process of comparing minterms is as follows:
inspect every two decimal numbers in adjacent sections of the table. If the
number in the section below is greater than the number in the section
above by a power of two (that is, 1, 2, 4, 8, 16, etc.), check both numbers
to show that they have been used, and write them down in column (b).
The pair of numbers transferred to column (b) includes a third number in
parentheses that designates the power of two by which the pair of numbers
differ. The number in parentheses tells us the position of the dash in the
binary notation. The result of all comparisons of column (a) is shown in
column (b).
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Table 3-4 Determination of Prime-Implicants of Example 3-10 With Decimal Notation

{a) {b) (c)
0 |V 0,1 (1) 0,2,8,10, (2,8)
0,2 @ |V 0,2,8,10, (2,8)
1|V 0.8 ® [V
2 | 10,11,14,15 (1, 4)
8 |V 2,10 ®) |V 10,11, 14,15 (1,4)
J 8,10 @ |V
10
10,11 |V
1 | 10,144 |V
14 |
11,15@) |V
15 | 14,150 |V

The comparison between adjacent sections in column (b) is carried out in
a similar fashion except that only those terms with the same number in
parentheses are compared. The pair of numbers in one section must differ
by a power of two from the pair of numbers in the next section. And the
numbers in the next section below must be greater for the combination to
take place. In column (c), we write all four decimal numbers with the two
numbers in parentheses designating the positions of the dashes. A comparison
of Tables 3-3 and 3-4 may be helpful in understanding the derivations in
Table 3-4.

The prime-implicants are those terms not checked in the table. These are
the same as before except that they are given in decimal notation. To
convert from decimal notation to binary, convert all decimal numbers in the
term to binary and then insert a dash in those positions designated by the
numbers in parentheses. Thus 0, 1 (1) is converted to binary as 0000,
0001; a dash in the first position of either number results in (000-).
Similarly, 0, 2, 8, 10 (2, 8) is converted to the binary notation from 0000,
0010, 1000, and 1010, and a dash inserted in positions 2 and 8, to result
in. (-0-0)

EXAMPLE 3-11. Determine the prime-implicants of the function

Fw,x,y,2z) = £(1,4,6,7,8,9,10, 11, 15)

The minterm numbers are grouped in sections as shown in Table 3-5,
column (a). The binary equivalent of the minterm is included for the
purpose of counting the number of 1’s. The binary numbers in the first
section have only one 1; the second section, two 1’s, etc. The minterm
numbers are compared by the decimal method and a match is found if the
number in the section below is greater than that in the section above. If
the number in the section below is smaller than the one above, a match is



Sec. 3-8 DETERMINATION OF PRIME-IMPLICANTS 79

Table 3-5 Determination of Prime-Implicants for Example 3-11

fa) (b) (c)
0001 1 V 1,9 (8 8,9,10,11 (1,2)
0100 4 4,6 8,9,10,11 (1,2)
1000 8 v 89 @ Vv _
—_— 8,10 2 v
0110 6 _—
1001 9 V 6,7 (1)
1010 10 v 9,11 @ V
_— 10,11 (1) V
o1l 7 V —_
1011 11 V 7,15 (8)
_— 11,15 4)
111 15 V _—

Prime-Implicants:
Binary

Decimal wxyz Term
1,9(8) —001 x'y'z
4,6 €2) 01-0 wxz'
6,7 (1) . 011— w'xy
7,15 (8) -111 xyz
11,15 (4) 1-11 wyz
8,9,10,11(1,2) 10—— wx'

not recorded even if the two numbers differ by a power of two. The
exhaustive search in column (a) results in the terms of column (b), with all
minterms in column (a) being checked. There are only two matches of
terms in column (b). Each gives the same two-literal term recorded in
column (c). The prime-implicants consist of all the unchecked terms in the
table. The conversion from the decimal to the binary notation is shown
under the table. The prime-implicants are found to be x'y'z, w'xz’, w'xy,
xyz, wyz, and wx'.

The sum of the prime-implicants gives a valid algebraic expression for the
function. However, this expression is not necessarily the one with the
minimum number of terms. This can be demonstrated from inspection of
the map for the function of Ex. 3-11. As shown in Fig. 3-19, the mini-
mized function is reorganized to be

F=x"y'z +wxz +wyz + wx'

which consists of the sum of four out of the six prime-implicants derived in
Ex. 3-11. The tabular procedure for selecting the prime-implicants that give
the minimized function is the subject of the next section.



80 SIMPLIFICATION OF BOOLEAN FUNCTIONS Chap. 3

wx

00 [1]
T

10| 1 [1{ 1 11

Figure 3-19 Map for the function of Example 3-11; F = x'y'z + wixz'
+ xyz + wx'

39 SELECTION OF PRIME-IMPLICANTS

The selection of prime-implicants that form the minimized function is made
from a prime-implicant table. In this table, each prime-implicant is repre-
sented in a row and each minterm in a column. Crosses are placed in each
row to show the composition of minterms that make the prime-implicants.
A minimum set of prime-implicants is then chosen that covers all the minterms
in the function. This procedure is illustrated in Ex. 3-12.

EXAMPLE 3-12. Minimize the function of Ex. 3-11.

The prime-implicant table for this example is shown in Table 3-6. There
are six rows, one for each prime-implicant (derived in Ex. 3-11), and nine
columns, each representing one minterm of the function. Crosses are placed
in each row to indicate the minterms contained in the prime-implicant of
that row. For example, the two crosses in the first row indicate that
minterms 1 and 9 are contained in the prime-implicant x"y'z. It is advisable
to include the decimal equivalent of the prime-implicant in each row, as it
conveniently gives the minterms contained in it. After all the crosses have
been marked, we proceed to select a minimum number of prime-implicants.

The completed prime-implicant table is inspected for columns containing
only a single cross. In this example, there are four minterms whose columns
have a single cross: 1, 4, 8, and 10. Minterm 1 is covered by prime-
implicant x'y'z: ie., the selection of prime-implicant x'y'z guarantees that
minterm 1 is included in the function. Similarly, minterm 4 is covered by
prime-implicant w'xz’; and minterms 8 and 10, by prime-implicant wx'.
Prime-implicants that cover minterms with a single cross in their column are
called essential prime-implicants. To enable the final simplified expression to
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Table 3-6 Prime-Implicant Table for Example 3-12

1 4 6 7 8 9 10 |- 11 15
Jx'y'z 1,9 X X
\/ wxz 4,6 X X
w'xy 6,7 X X
xyz 7,15 X X
wyz 11, 15 X X
Vowx' 8,9, 10, 11 X |x | x|x
VI{VviV VIiVvIVvI]V

contain all the minterms, we have no alternative but to include essential
prime-implicants. A check mark is placed in the table next to the essential
prime-implicants to indicate that they have been selected.

Next we check each column whose minterm is covered by the selected
essential prime-implicants. For example, the selected prime-implicant x'y'z
covers minterms 1 and 9. A check is inserted in the bottom of the
columns. Similarly, prime-implicant w'xz’ covers minterms 4 and 6 and wx’
covers minterms 8, 9, 10, and 11. Inspection of the prime-implicant table
shows that the selection of the essential prime-implicants covers all the
minterms of the function except 7 and 15. These two minterms must be
included by the selection of one or more prime-implicants. In this example,
it is clear that prime-implicant xyz covers both minterms and is, therefore,
the one to be selected. We have thus found the minimum set of prime-
implicants whose sum gives the required minimized function:

F=x'y'z + wxz' + wx' +xyz

The simplified expressions derived in the preceeding examples were all in
the sum of products form. The tabulation method can be adapted to give a
simplified expression in product of sums. As in the map method, we have
to start with the complement of the function by taking the 0’s as the
initial list of minterms. This list contains those minterms not included in
the original function which are numerically equal to the maxterms of the
function. The tabulation process is carried out with the 0’s of the function
and terminates with a simplified expression in sum of products of the
complement of the function. By taking the complement again, one obtains
the simplified product of sums expression.

A function with don’t-care conditions can be simplified by the tabulation
method after a slight modification. The don’t-care terms are included in the
list of minterms when the prime-implicants are determined. This allows the
derivation of prime-implicants with the least number of literals. The don’t-
care terms are not included in the list of minterms when setting up the
prime-implicant table. This is because don’t-care terms do not have to be
covered by the selected prime-implicants.



82 SIMPLIFICATION OF BOOLEAN FUNCTIONS Chap. 3
3-10 CONCLUDING REMARKS

Two methods of Boolean function simplification were introduced in this
chapter. The criterion for simplification was taken to be the minimization
of the number of literals in sum of products or product of sums expres-
sions. Both the map and the tabulation methods are restricted in their
capabilities since they are useful for simplifying only Boolean functions
expressed in the standard forms. Although this is a disadvantage of the
methods, it is not very critical. Most applications prefer the standard forms
over any other form. We have seen from Fig. 3-15 that the gate implemen-
tation of expressions in standard form consists of no more than two levels
of gates. Expressions not in the standard form are implemented with more
than two levels. Humphrey (5) shows an extension of the map method that
produces simplified mulitilevel expressions.

One should recognize that the reflected code sequence chosen for the
maps is not unique. It is possible to draw a map and assign a binary
reflected code sequence to the rows and columns different from the
sequence employed here. As long as the binary sequence chosen produces a
change in only one bit between adjacent squares, it will produce a valid and
useful map. Any map that looks different from the one used in this book,
or is called by a different name, should be recognized as merely a variation
of reflected code assignment.

As evident from Exs. 3-10 and 3-11, the tabulation method has the
drawback that errors will inevitably occur in trying to compare numbers
over long lists. The map method would seem to be preferable, but for more
than five variables, we cannot be certain that the best simplified expression
has been found. The real advantage of the tabulation method lies in the
fact that it consists of specific step-by-step procedures that guarantee an
answer. Moreover, this formal procedure is suitable for computer
mechanization.

It was stated in Sec. 3-8 that the tabulation method always starts with
the minterm list of the function. If the function is not in this form, it
must be converted. In most applications, the function to be simplified
comes from a truth table, from which the minterm list is readily available.
Otherwise, the conversion to minterms adds considerable manipulative work
to the problem. However, an extension of the tabulation method exists for
finding prime-implicants from arbitrary sum of prody s expressions. See, for
example, McCluskey (7).

In this chapter, we have considered the simpiitication of functions with
many input variables and a single output variable. However, some digital
circuits have more than one output. Such circuits are described by a set of
Boolean functions, one for each output variable. A circuit with multiple
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outputs may sometimes have common terms among the various functions
which can be utilized to form common gates during the implementation.
This results in further simplification not taken into consideration when each
function is simplified separately. There exists an extension of the tabulation
method for multiple output circuits (6, 7). However, this method is too
specialized and very tedious for human manipulation. It is of practical
importance only if a computer program based on this method is available to
the user.

PROBLEMS

3-1. Obtain the simplified expressions in sum of products for the following
Boolean functions.

(@ F(x,y,z) = £(2,3,6,7)

(b) F(A, B, C,D) = Z(7,13,14,15)

(c) F(A,B, C,D) = 2(4,6,7,15)

(d) Fiw, x,y,z) = Z(2,3,12,13,14,15)

3-2. Obtain the simplified expressions in sum of products for the following
Boolean functions.
(@) xy + x'y'z + x'yz'
(b) A'B + B'C'+ B'C’
(c) d'b' + bc + a'be’

@ xy'z + xyz' + x'yz + xyz

"y
LEN

3-3. Obtain the simplified expressions in sum of products for the following
Boolean functions.

(a) D4’ + B) + B'(C + AD)

(b) ABD + A'CD' + A'B + A'CD' + AB'D’

() Kim' + K¥m'n + kim'n' + Imn’

(d) A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D
() x'z + wxy' + wx'y + xy")

230t . .
3-4. Obtain the simp:ft‘u'a& expressions in sum of products for the following
Boolean function:.

(a) F(4, B, C, D, E) = 2(0, 1, 4, 5, 16, 17, 25, 29)
(b) BDE + B'C'D + CDE + A'B'CE + A'B'C + B'C'D'E'
(c) A'B'CE' + A'B'C'D' + B'D'E' + B'CD’ + CDE' + BDE'
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3-5.

3-7.

3-8

3-9,

3-10.

SIMPLIFICATION OF BOOLEAN FUNCTIONS Chap. 3

Given the following truth table:

X ¥y z Fl F2
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

(a) express F; and F, in product of maxterms.
(b) obtain the simplified functions in sum of products.

(c) obtain the simplified functions in product of sums.

. Obtain the simplified expressions in product of sums:

(a) F(x,y,z) =110, 1, 4, 5)

(b) F(4,B,C,D) =10, 1, 2, 3, 4, 10, 11)

(¢) F(wx,y,z) =1, 3, 5, 7, 13, 15)

Obtain the simplified expressions in (1) sum of products and (2) product

of sums:

@ x'z +y'2 +yz' +xyz

(b) (4 + B' + D)A' + B + D)C + D)C' + D")

)@ +B +DYA4+B +CYA +B+DYB+C' +D)

(d) A +B +D)A" +D'Y4 +B+D)A+ B +C+D)

(e) wyz' + vw'z' + vw'x + vViwz + VW7

. Draw the gate implementation of the simplified Boolean functions
obtained in Prob. 3-7.

- Simplify the Boolean function F in sum of products using the don’t-

care conditions d:
(@ F=y +x'7
d =yz + xy
(b) F=B'CD + BCD' + ABC'D
d = B'cD' + A'BC'D'
Simplify the Boolean function F, using the don’t-care conditions d, in
(1) sum of products and (2) product of sums:
(a) F=ABD + 4'CD + A'BC

d = A'BC'D + ACD + AB'D'
) F=wEy+xy +xp2) +x7(p +w)
d = wx('z +yz') + wyz
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3-12.

3-13.

3-14.

3-15.

3-16.
3-17.

(c) F = ACE + A'CD'E' + A'CDE
d = DE' + A'D'E + AD'E’

(d) F = BDE' + A'BE + B'CE + A'BCD'
d = BDE' + CD'E’'

. Given Boolean functions F; and Fj:

(a) Show that the Boolean function G obtained from ANDing F; and F»
(ie., G = F; * F,) contains those minterms common to both F;
and F,.

(b) Show that the Boolean function H obtained from ORing F; and
F, (ie., H = F, + F,) contains all the minterms of both F
and F;.

(¢) Explain how the maps of F; and F, can be used to find G and H.
The following Boolean expression
BE + B'DE'
is a simplified version of the expression
A'BE + BCDE + BC'D'E + A'B'DE' + B'C'DE'
Are there any don’t-care conditions? If so, what are they?
Give three possible ways to express the function
F = A'B'D' + AB'CD' + A'BD + ABCD
with eight or less literals.

With the use of maps, find the simplest form in sum of products of
the function F = fg, where f and g are given by:

f
g=w+x+y +2)x +y + 2w +y +2)
Hint: See Prob. 3-11.

Simplify the following Boolean functions by means of the tabulation
method.

(@) F(4,B,C, D, E, F, G) = X(20, 28,52, 60)

(b) F(4,B,C, D, E, F, G) = X(20, 28, 38, 39, 52,60, 102, 103, 127)
(c) F(4,B,C D, E, F) 2(6,9,13,18,19,25,27,29,41,45,57,61)
Repeat Prob. 3-6 using the tabulation method.

Repeat Prob. 3-10(c) and (d) using the tabulation method.

wx r +ylz + wlyzl + xl zl
Y ¥y

L}

[}
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4 COMBINATIONAL LOGIC

41 INTRODUCTION TO COMBINATIONAL LOGIC
CIRCUITS

Logic circuits for digital systems may be combinational or sequential. A
combinational circuit consists of logic gates whose outputs at any time are
determined directly from the present combination of inputs without regard
for previous inputs. A combinational circuit performs a specific information
processing operation fully specified logically by a set of Boolean functions.
Sequential circuits employ memory elements (binary cells) in addition to
logic gates. Their outputs are a function of the inputs and the state of the
memory elements. The state of memory elements, in turn, is a function of
previous inputs. As a consequence, the outputs of a sequential circuit
depend not only on present, but also on past, inputs, and the circuit
behavior must be specified by a time sequence of inputs and internal states.
Sequential circuits are discussed in Ch. 6.

In Ch. 1 we learned to recognize binary numbers and binary codes that
represent discrete quantities of information. These binary variables are repre-
sented by electric voltages or by some other signal. The signals can be
manipulated in digital logic gates to perform required functions. In Ch. 2 we
introduced Boolean algebra as a way to express logic functions algebraically.
In Ch.3 we learned how to simplify Boolean functions to achieve economi-
cal gate implementations. The purpose of this chapter is to utilize the
knowledge acquired in previous chapters and formulate various systematic
design and analysis procedures of combinational circuits. The solution of
some typical examples will provide a useful catalog of elementary functions
important for the understanding of digital computers and systems.

87
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A combinational circuit consists of input variables, logic gates, and
output variables. The logic gates accept signals from the inputs and generate
signals to the outputs. This process transforms binary information from the
given input data to the required output data. Obviously, both input and
output data are represented by binary signals; ie., they exist in two
possible values, one representing logic—! and the other logic—0. A block
diagram of a combinational circuit is shown in Fig. 4-1. The n input binary
variables come from an external source; the m output variables go to an
external destination. In many applications, the source and/or destination are
storage registers (Sec. 1-7) located either in the vicinity of the combina-
tional circuit or in a remote external device. By definition, an external
register does not influence the behavior of the combinational circuit,
because if it does, the total system becomes a sequential circuit.

For n input variables, there are 2" possible combinations of binary input
values. For each possible input combination, there is one and only one
possible output combination. A combinational circuit can be described by m
Boolean functions, one for each output variable. Each output function is
expressed in terms of the n input variables.

Each input variable to a combinational circuit may have one or two
wires. When only one wire is available, it may represent the variable either
in the normal form (unprimed) or in the complement form (primed). Since
a variable in a Boolean expression may appear primed and/or unprimed, it
is necessary to provide an inverter for each literal not available in the input
wire. On the other hand, an input variable may appear in two wires,
supplying both the normal and complement forms to the input of the
circuit. If so, it is unnecessary to include inverters for the inputs. The type

External destination

m output variables

Combinational
Logic
Circuit

n input variables

External source

Figure 4-1 Block diagram of a combinational circuit
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of binary cells used in most digital systems are flip-flop circuits (Ch. 6) that
have outputs for both the normal and complement values of the stored
binary variable. In our subsequent work, we shall assume that each input
variable appears in two wires, supplying both the normal and complement
values simultaneously. We must also realize that an inverter circuit can
always supply the complement of the variable if only one wire is available.

4-2 DESIGN PROCEDURE

The design of combinational circuits starts from the verbal outline of the
problem and ends in a logic circuit diagram, or a set of Boolean functions
from which the logic diagram can be easily obtained. The procedure
involves the following steps:

. The problem is stated.

. The number of available input variables and required output variables

is determined.

Each input and output variable is assigned a letter symbol.

4. The truth table that defines the required relations between inputs and
outputs is derived. '

5. The simplified Boolean function for each output is obtained.

6. The logic diagram is drawn.

N =

w

A truth table for a combinational circuit consists of input columns and
output columns. The 1’s and O in the input columns are obtained from
the 2" binary combinations available for n input variables. The binary
values for the outputs are determined from examination of the stated
problem. An output can be equal to either O or 1 for every valid input
combination. However, the specifications may indicate that some input
combinations will not occur. These combinations become don’t-care
conditions.

The output functions specified in the truth table give the exact defini-
tion of the combinational circuit. It is important that the verbal specifica-
tions are interpreted correctly into a truth table. Sometimes the designer
must use his intuition and experience to arrive at the correct interpretation.
Word specifications are very seldom complete and exact. Any wrong inter-
pretation which results in an incorrect truth table produces a combinational
circuit that will not fulfil the stated requirements.

The output Boolean functions from the truth table are simplified by any
available method, such as algebraic manipulation, the map method, or the
tabulation procedure. Usually there will be a variety of simplified expres-
sions from which to choose. However, in any particular application, certain
restrictions, limitations, and criteria will serve as a guide in the process of
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choosing a particular algebraic expression. A practical design method would
have to consider such constraints as (a) minimum number of gates, (b) min-
imum number of inputs to a gate, (¢) minimum propagation. time of the
signal through the circuit, (d) minimum number of interconnections, and
(e) limitations of the driving capabilities of each gate. Since all these
criteria cannot be satisfied simultaneously, and since the importance of each
constraint is dictated by the particular application, it is difficult to make a
general statement as to what constitutes an acceptable simplification. In
most cases, the simplification begins by satisfying an elementary objective
such as producing a simplified Boolean function in a standard form and
from that proceeds to meet any other performance criteria.

In practice, designers tend to go from the Boolean functions to a wiring
list that shows the interconnections among various standard logic gates. In
that case, the design need not go any further than the required simplified
output Boolean functions. However, a logic diagram is helpful for visualizing
the gate implementation of the expressions.

4-3 ADDERS

Digital computers perform a variety of information processing tasks. Among
the basic functions encountered are the various arithmetic operations. The
most basic arithmetic operation, no doubt, is the addition of two binary
digits. This simple addition consists of four possible elementary operations,
namely: 0+ 0 =0, 0+ 1 =1,1+0=1, and 1 + 1 = 10. The first
three operations produce a sum whose length is one digit, but when both
augend and addend bits are equal to 1, the binary sum consists of two
digits. The higher significant bit of this result is called a carry. When the
augend and addend numbers contain more significant digits, the carry
obtained from the addition of two bits is added to the next higher order
pair of significant bits. A combinational circuit that performs the addi-
tion of two bits is called a half-adder. One that performs the addition
of three bits (two significant bits and a previous carry) is a full-adder. The
name of the former stems from the fact that two half-adders can be
employed to implement a full-adder. The two adder circuits are the first
combinational circuits we shall design.

Half-Adder

From the verbal explanation of a half-adder, we find that this circuit
needs two binary inputs and two binary outputs. The input variables
designate the augend and addend bits; the output variables produce the sum
and carry. It is necessary to specify two output variables because the result
may consist of two binary digits. We arbitrarily assign symbols x and y to
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the two inputs and S (for sum) and C (for carry) to the outputs.

Now that we have established the number and name of the input and
output variables, we are ready to formulate a truth table to identify exactly
the function of the half-adder. This truth table is shown below:

|

_-—0 O | %
oo |
moool|la
o= =0 |\

The carry output is O unless both inputs are 1. The S output represents the
least significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained
directly from the truth table. The simplified sum of products expressions
are:

LI}

S =x'y+xy
C=xy

The logic diagram for this implementation is shown in Fig. 4-2 (a), as are
four other implementations for a half-adder. They all achieve the same
result as far as the input-output behavior is concerned. They illustrate the
flexibility available to the designer when implementing even a simple com-
binational logic function such as this.

Figure 4-2(a), as mentioned above, is the implementation of the half-
adder in sum of products. Figure 4-2(b) shows the implementation in
product of sums:

S=@+pyE +))
C = xy

To obtain the implementation of Fig. 4-2(c), we note that S is the
exclusive-or of x and y. The complement of S is the equivalence of x and
¥ (Sec. 1-6):

S =xy +xy
but C = xy, and therefore we have

S =(C+x'yY
In Fig. 4-2(d) we use the product of sums implementation with C derived
as follows:

C=xy=( +y)

In Fig. 4-2(¢) we obtain the product term (x' + y') from the complement
of C as follows:
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X o x
Y — y
x — x’
y — y
X o— \ X —— \
y"J__/ ¢ y—%_j ¢
(a) S=xy +xy (b)) S=0Gx+y&+y)
C =uxy C =xy
xl

iy

X |
- D=
) S
= L
L/ Ty
) §=(C+xyYy d S=@E+y»E+y)
€ =1y C=w+yy

D

=

x—_\
y—__/J ¢
) S=@x+ycC
C =xy

Figure 4-2 Various implementations of a half-adder
S=@x +yE +y) =06 +306) =(x+yC

The half-adder is limited; it adds only two single bits. Although it
generates a carry for the next higher pair of significant bits, it cannot
accept a carry generated from the previous pair of lower significant bits. A
full-adder solves this problem.

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of
three input bits. It consists of three inputs and two outputs. Two of the
input variables, denoted by x and y, represent the two significant bits to be
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added. The third input, z, represents the carry from the previous lower
significant position. Two outputs are necessary because the arithmetic sum
of three binary digits ranges in value from O to 3, and binary 2 or 3 needs
two digits. The two outputs are designated by the symbols S for sum, and
C for carry. The binary variable S gives the value of the least significant bit
of the sum. The binary variable C gives the output carry. The truth table of
the full-adder is as follows:

N

== O O OO R
- O OO O|
-0 = OO O

—_m_-o R, o000l N
== = ) [7)

The eight rows under the input variables designate all possible combinations
of 1’s and Qs that these variables may have. The 1’s and O’s for the ouput
variables are determined from the arithmetic sum of the input bits. When
all input bits are 0’s, the output is 0. The S output is equal to 1 when
only one input is equal to 1 or when all three inputs are equal to 1. The C
output has a carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different
interpretations at various stages of the problem. Physically, the binary
signals of the input wires are considered binary digits added arithmetically
to form a two-digit sum at the output wires. On the other hand, the same
binary values are considered variables of Boolean functions when expressed
in the truth table or when the circuit is implemented with logic gates. It is
important to realize that two different interpretations are given to the
values of the bits encountered in this circuit.

The input-output logical relation of the  full-adder circuit may be
expressed in two Boolean functions, one for each output variable. Each
output Boolean function requires a unique map for its simplification. Each
map must have eight squares since each output is a function of three input
variables. The maps of Fig. 4-3 are used for simplifying the two output
functions. The 1’s in the squares for the maps of S and C are determined
directly from the truth table. The squares with 1’s for the S output do not
combine in adjacent squares to give a simplified expression in sum of
products. The C output can be simplified to a six-literal expression. The
logic diagram for the full-adder implemented in sum of products is shown
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yz y yz y

00 01 11 10 00 01 11 10
X X
0 1 1 0 (11

x {1 1 1 x {1 [ )] 1
—
z z

S=xyz+ Xy +xy'7 + xyz C=uxy+xz+yz

Figure 4-3 Maps for full-adder

in Fig. 4-4. This implementation uses the following Boolean expressions:

S =xyz+x'yz +xy'2 +xyz
C=xy+xz+yz
Other configurations for a full-adder may be developed. The product

of sums implementation requires the same number of gates as in Fig. 44,
with the number of AND and OR gates interchanged. A full-adder can be

xl

D— .

7
X = Y !
y -

= |

7

s DD

Z e

x

¥ —

7

y —
z—
X
y_j__-
7 —

Figure 4-4 Implementation of full-adder in sum of products

implemented with two half-adders and one OR gate as shown in Fig. 4-5.
The S output from the second half-adder is the exclusive-or of z and the
output of the first half-adder giving:

xy +xy s
¥~ Half-adder xy Half-adder

— [

Figure 4-5 Implementation of full-adder with two half-adders and one
OR gate

(o)




Sec. 4-4 SUBTRACTORS 95

S =z'(xy +x'y) +z(xy' +xy)
Z(xy’ + x'y) + z2(xy + x'¥)
= xylzl + xlyzl + xyz + xlylz

and the carry output is

C=z(xy' +x'y) +xy =xp'z + x'yz + xy

4-4 SUBTRACTORS

The subtraction of two binary numbers may be accomplished by taking the
complement of the subtrahend and adding it to the minuend (Sec. 1-5). By
this method, the subtraction operation becomes an addition operation
requiring full-adders for its machine implementation. It is possible to imple-
ment subtraction with logic circuits in a direct manner as done with paper
and pencil. By this method, each subtrahend bit of the number is sub-
tracted from its corresponding significant minuend bit to form a difference
bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed
from the next higher significant position. The fact that a 1 has been
borrowed must be conveyed to the next higher pair of bits by means of a
binary signal coming out (output) of a given stage and going into (input)
the next higher stage. Just as there are half- and full-adders, there are half-
and full-subtractors.

Half-Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and
produces their difference. It also has an output to specify if a 1 has been
borrowed. Designate the minuend bit by x and the subtrahend bit by y. To
perform x — y we have to check the relative magnitudes of x and y. If x
> y we have three possibilities: 0 —~0=0,1 -0=1,1-1= 0. The
result is called the difference bit. If x < y, we have 0 — 1, and it is
necessary to borrow a 1 from the next higher stage. The 1 borrowed from
the next higher stage adds two to the minuend bit, just as in the decimal
system a borrow adds 10 to a minuend digit. With the minuend equal to 2,
the difference becomes 2 — 1 = 1. The half-subtractor needs two outputs.
One output generates the difference and will be designated by the symbol
D. The second output, designated B for borrow, generates the binary signal
that informs the next stage if a 1 has been borrowed. The truth table for
the input-output relations of a half-subtractor can now be derived as
follows:

-0 0 R
-0 = O
oco=olWw
O =OlY
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The output borrow B is a 0 as long as x > y. It is a 1 for x = 0 and
Y = 1. The D output is the result of the arithmetic operation 2B + x — y.

The Boolean functions for the two outputs of the half-subtractor are
derived directly from the truth table:

D=x'y +xy
B =Xy

1l

It is interesting to note that the logic for D is exactly the same as the
output S in the half-adder.

Full-Subtractor

A fullsubtractor is a combinational circuit that performs a subtraction
between two bits, taking into account that a 1 may have been borrowed by
a lower significant stage. This circuit has three inputs and two outputs. The
three inputs, x, y, and z, denote the minuend, subtrahend, and previous
borrow, respectively. The two outputs, D and B, represent the difference
and output borrow, respectively. The truth table for the circuit is as
follows:

*
N
-]
>

o - O OO O
_m=-O O, OoO |
—_ O O MmO O
—_-O OO O
- O MmO MO

The eight rows under the input variables designate all possible combina-
tions of 1’s and 0’s that the binary variables may take. The 1’s and Q’s for
the output variables are determined from the subtraction of x — y — z.
The combinations having input borrow z = 0 reduce to the same four
conditions of the half-adder. For x = 0, y = 0, and z = 1, we have to
borrow a 1 from the next stage, which makes B = 1 and adds 2 to x.
Since 2 -0 —1 =1, D=1. For x =0 and yz = 11, we need to
borrow again, making B = 1 and x = 2. Since 2 — 1 — 1 =0, D = 0.
For x = 1 and yz = 01, we have x — y — z = 0, which makes B = 0
and D = 0. Finally, for x = 1, y = 1, z = 1, we have to borrow 1,
making B = landx = 3,and 3 — 1 — 1 =1, making D = 1.

The simplified Boolean functions for the two outputs of the fuli-
subtractor are derived in the maps of Fig. 4-6. The simplified sum of
product output functions are:
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yz y y
s s, —— ———
x 00 01 11 10 x 00 01 11 10
0 1 1 0 IS [
x41 1 1 x4l 1
—_———— N ———
z z
D=x'yz+x'yz+ xy'7 + xyz B=xy+xz+yz

Figure 4-6 Maps for full-subtractor

x'y'z + x'yz' + xy'z + xyz

D
B=x'y +x'z +yz

Again we note that the logic function for output D in the full-subtractor is
exactly the same as output § in the full-adder. Moreover, the output B
resembles the function for C in the full-adder except that the input variable
x is complemented. Because of these similarities, it is possible to convert a
full-adder into a full-subtractor by merely complementing input x prior to
its application to the gates that form the carry output.

45 CODE CONVERSION

The availability of a large variety of codes for the same discrete elements of
information results in the use of different codes by different digital systems.
It is sometimes necessary to use the output of one system as input to
another. A conversion circuit must be inserted between the two systems if
each uses different codes for the same information. Thus, a code converter
is a circuit that makes the two systems compatible even though each uses a
different binary code.

To convert from binary code A to binary code B, the input lines must
supply the bit combination of elements as specified by code A and the
output lines must generate the corresponding bit combination of code B. A
combinational circuit performs this transformation by means of logic gates.
The design procedure of code converters will be illustrated by means of a
specific example of conversion from the BCD to the excess-3 code.

The bit combinations for the BCD and excess-3 codes are listed in
Table 1-2, Sec. 1-6. Since each code uses four bits to represent a decimal
digit, there must be four input variables and four output variables. Let us
designate the four input binary variables by the symbols 4, B, C, D, and
the four output variables by w, x, y, z. The truth table relating the
input-output variables is shown in Table 4-1. The bit combinations for the
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Table 4-1 Truth Table for Code Conversion Example

Input Output
BCD Excess-3 Code
A B C D w x y z

-0 00000 QOO
COFRME-=O0O0 00
COmRMROOrRR=OO
—_O OO O ~=O
e = O OO OO
- O OOQ - k=0
O HFOOM =O QM-
O OO OO

inputs and their corresponding outputs are obtained directly from
Table 1-2. We note that four binary variables may have 16 bit combina-
tions, only 10 of which are listed in the truth table. The six bit. combi-
nations not listed for the input variables are don’t-care combinations. Since
they will never occur, we are at liberty to assign to the output variables
either a 1 or a 0, whichever gives a simpler circuit.

The maps in Fig. 4-7 are drawn to obtain a simplified Boolean function
for each output. Each of the four maps of Fig. 4-7 represents one of the
four outputs of this circuit as a function of the four input variables. The
I’s marked inside the squares are obtained from the minterms that make
the output equal to 1. The 1’s are obtained from the truth table by going
over the output columns one at a time. For example, the column under
output z has five 1’s; therefore, the map for z must have five 1’s, each being
in a square corresponding to the minterm that makes z equal to 1. The six
don’t-care combinations are marked by X’s. One possible way of simplifying
the functions in sum of products is listed under the map of each variable.

A two-level logic diagram may be obtained directly from the Boolean
expressions derived by the maps. There are various other possibilities for a
logic diagram that implements this circuit. The expressions obtained in
Fig. 4-7 may be manipulated algebraically for the purpose of using common
gates for two or more outputs. This manipulation, shown below, illustrates
the flexibility obtained with multiple output systems when implemented
with three or more levels of gates.

z =D
CD + CD' =CD + (C + D)

B'C + BD + BCD' = B'(C + D) + BCD'
B'(C + D) + B(C + DY

w=A4 +BC+BD =4 + B(C + D)

y

X
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Figure 4-7 Maps for BCD to excess-3 code converter

The logic diagram that implements the above expressions is shown in
Fig. 4-8. In it we see that the OR gate whose output is C + D has been
used to implement partially each of three outputs.

Not counting input inverters, the implementation in sum of products
requires seven AND gates and three OR gates. The implementation of
Fig. 4-8 requires four AND gates, four OR gates, and one inverter. If only
the normal inputs are available, the first implementation will require
inverters for variables B, C, and D, while the second implementation
requires inverters for variables B and D.

46 COMPARATORS

A comparator is a combinational circuit that compares two numbers 4 and
B and determines their relative magnitude. The outcome of the comparison
is displayed in three outputs that indicate whether 4 > B, A=B,orA <B.
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Figure 4-8 Logic diagram for BCD to excess-3 code converter

Possible types of digital data that one may wish to compare are: binary
numbers, decimal numbers represented in a binary code, or any other ordered
set of discrete elements of information. By following the design procedure out-
lined in Sec. 4-2, we shall now demonstrate the design of a circuit that compares
the relative magnitude of two binary numbers each of two bits in length. We
shall then proceed to formulate a general scheme for the design of comparators
that compare any ordered set of data of any bit length.

A circuit that compares two binary numbers 4 and B, each consisting of
two bits, must have two inputs for each number. Label the four input
variables A,, Ao, By, and By, with the subscript 0 denoting the least
significant bit. The circuit contains three outputs, one for each of the
possibilities 4 > B, A = B, A < B, labeled x, y, and z, respectively. The
truth table for the input-output relations is shown in Table 4-2. We note
that the outputs are mutually exclusive; only one output is equal to 1 for
each input combination. The four input combinations that make the
“equality” output y equal to 1 are those with 4,49 = ByBy. The six
input combinations that make the “greater than” output x equal to 1 are
those with 4,4, > B;By. The remaining six input combinations for the
“less than” output z are those with 4,44 < B;Bo. The three maps for the
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Table 4-2 Truth Table for Comparator

Inputs Outputs
A>B A=B A<B
Ay Ao B, By X y z
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 i 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

outputs derived from the truth table are shown in Fig. 4-9. The simplified
output Boolean functions in sum of products are obtained from the maps:

X = AlB'l + A, AgBy + AoB} By
Y(A1, Ao, By, Bo) = Z(0, 5, 10, 15)
z = BIA'I + B;BoAy + BOA'IAB

The function for y cannot be simplified and is expressed in its sum of
minterms form for convenience. Note the symmetry of the maps and the
Boolean functions: the 1’s of y lie in the squares forming the diagonal, and
the functions for x and z are similar with corresponding A’s and B’s
interchanged. The logic diagram implementation of this circuit can be easily
derived from the Boolean functions and is not drawn here.

The truth table for comparing two n-bit binary numbers requires 22n
rows and becomes unmanageable even with » = 3. Combinational circuits
with greater than six inputs are difficult to design on paper and require a
certain amount of machine computation assistance. However, circuits that
possess a certain amount of symmetry may sometimes be designed by
means of an algorithmic procedure if one is found to exist. An algorithm is
a procedure that specifies a set of rules that gives the solution to a
problem. This method will now be illustrated by deriving an algorithm for
the design of comparators.



102 COMBINATIONAL LOGIC Chap. 4

B B,
—— e ——t———
00 01 " 11 10 00 01 " 11 10
00 00| 1
01} |1 01 1
15 Ao AO
11f |LL] 1 Il 11 1
4, A
10| | 1 1 10 1
—_ -
BO BO
x= A B+ A, AyBy+A,B'B ¥(4,44BBy) = 2(0,5,10,15)
B
1
———
00 01 " 11 10
00 [1 _ﬂl 1
01 1 1
A
11
4
10 Ill
—_—

B,
0
= BlAll -+ B]BoA’()+ BOA,lAé)

Figure 4-9 Maps for comparator circuit of 2-bit numbers

The algorithm is a direct application of the procedure a human uses to
compare the relative magnitude of numbers, or for that matter, the collating
order of the alphabet. Consider two numbers 4 and B with three digits
each. Write the coefficients of the numbers with descending significance as
follows:

Az24,4,

B3B, B,
The two numbers are equal if A, = B, and A4; = B; and 4o, = B,. When
the digits are binary, they are equal if each pair of significant bits forms
either two 1's or two 0’s. This is expressed logically by the following
Boolean function:

(A = B) = (A2B, + A3B,)(A,B, + A1B})(A0By + AyBy)
where (4 = B) is an output binary variable equal to logic-1 if A is
arithmetically equal to B.
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To determine if A is greater than or less than B, we inspect the relative
magnitude of pairs of significant digits starting from the most significant
position. If the two digits are equal, we compare the next lower significant
- pair of digits. This comparison is continued until a pair of unequal digits is
reached. If the corresponding digit of 4 is greater than that of B, A > B,
otherwise 4 < B. In the case of binary digits, this sequential comparison
can be logically expressed by the following Boolean functions:

(A > B) = A,B) + A, B1(A2B; + A3B)
+ AoBo(A,B; + A3B)(A:B, + A\BY)

(A4 < B) = A3B, + A1B,(4,B, + A3B3)
+ AgBo(A2B, + A3B53)(A1By + A}B})

where again (4 > B) and (4 < B) are binary output variables which are
equal to logic-1 when 4 > B or A < B, respectively. In words, the first
Boolean function states that binary output (4 > B) is equal to logic-1 if
A, =1 and B, = 0, or if A; = 1 and B; = 0 (provided that 4, = B,)
or if Ag = 1 and B, = O (provided that both 4, = B and A, = By).
The gate implementation of the three outputs just derived is simpler than
it seems because the “unequal” outputs can use portions of the outputs
generated by the “equality” output. The logic diagram for a comparator of
two three-bit numbers is shown in Fig. 4-10. The procedure for obtaining
comparator circuits for binary numbers with more than three bits is
obvious. Comparators of decimal numbers will use the same algorithm
except that two four-bit numbers must be compared for each decimal digit.

4-7 ANALYSIS PROCEDURE

The design of a combinational circuit starts from the verbal specifications of
a required function and culminates with a set of output Boolean functions
or a logic diagram. The analysis of a combinational circuit is a somewhat
reverse process: it starts with a given logic diagram and culminates with a
set of Boolean functions, a truth table, or a verbal explanation of the
circuit operation. If the logic diagram to be analyzed is accompanied with a
function name or with an explanation of what it is assumed to accomplish,
then the analysis problem reduces to a verification of the stated function.

The first step in the analysis is to make sure that the given circuit is
combinational and not sequential. The diagram of a combinational circuit has
logic gates with no feedback paths or memory elements. A feedback path is
a connection from the output of one gate to the input of a second gate
that forms part of the input to the first gate. Feedback paths or memory
elements in a digital circuit define a sequential circuit and must be analyzed
according to procedures outline in Ch. 6.
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Figure 4-10 Logic diagram of a 3-bit comparator

Once the logic diagram is verified as a combinationl circuit, one can
proceed to obtain the output Boolean functions and/or the truth table. If
the circuit is accompanied with a verbal explanation of its function, then
the Boolean functions or the truth table is sufficient for verification. If the
function of the circuit is under investigation, then it is necessary to
interpret the operation of the circuit from the derived truth table. The
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success of such investigation is enhanced if one has previous experience and
familiarity with a wide variety of digital circuits. The ability to correlate a
truth table with an information processing task is an art one acquires with
experience.

To obtain the output Boolean functions from a logic diagram, proceed as
follows:

1. Label with arbitrary symbols all gate outputs that are a function of
the input variables. Obtain the Boolean functions for each gate.

2. Label with other arbitrary symbols those gates which are a function
of input variables and/or previously labeled gates. Find the Boolean
functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit
are obtained. '

4. By repeated substitution of previously defined functions, obtain the
output Boolean functions in terms of input variables only.

The analysis of the combinational circuit in Fig. 4-11 will illustrate the
proposed procedure. We note that the circuit has three binary inputs, 4, B,
and C, and two binary outputs, F; and F,. The outputs of various gates
are labeled with intermediate symbols. The output of gates that are a
function of input variables only are F,, T, and T,. The Boolean functions
for these three outputs are:

F2=AB+AC+BC
T,=4A+B+C
T, = ABC

Next we consider outputs of gates which are a function of already defined
symbols.

T3 =F5T1
F, =T + T,

The output Boolean function F, expressed above is already given as a
function of the inputs only. To obtain F; as a function of 4, B, and C,
form a series of substitutions as follows:

Fy =Ty + T, = F}T, + ABC = (AB + AC + BC)'(A+B +C) + ABC
=4 +BYA +CYB +CY(A+B+C)+ABC
= (' + B'C"Y(AB'+ AC + BC + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC

If we want to pursue the investigation and determine the information
transformation task achieved by this circuit, we can derive the truth table
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Figure 4-11 Logic diagram for analysis example

directly from the Boolean functions and try to recognize a familiar opera-
tion. For this example, we note that the circuit is a full-adder with F,
being the sum output and F, the carry output. 4, B, and C are the three
inputs added arithmetically.

The derivation of the truth table for the circuit is a straightforward
process once the output Boolean functions are known. To obtain the truth
table directly from the logic diagram without going through the derivations
of the Boolean functions, proceed as follows:

1. Determine the number of input variables to the circuit. For n inputs,

form the 27" possible input combinations of 1’s and 0’s by listing the
binary numbers from 0 to 27 — 1.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a
function of the input variables only.

4. Proceed to obtain the truth table for the outputs of those gates that
are a function of previously defined values until the columns for all
outputs are determined.

This process can be illustrated using the circuit of Fig. 4-11. In

Table 4-3 we form the eight possible combinations for the three input
variables. The truth table for F, is determined directly from the values of
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Table 4-3 Truth Table for Logic Diagram of Figure 4-11

A B C F, | Py |y | T | T2 | Fu
o o0 o 0 1 ol ot ol o
0 0 1 0 1 1 1410 1
0 1 0 0 1 1 1 0 1
0 1 1 1 0 1 ot ol o
1 0 0 0 1 1 1] o] 1
1 0 1 1 0 11 o]l o} o
1 1 0 1 0 t{ o] of o
1 1 1 1| o O ) 1 1

A, B, and C, with F, equal to 1 for any combination that has two or
three inputs equal to 1. The truth table for F, is the complement of F,.
The truth tables for Ty and 7, are the OR and AND function of the input
variables, respectively. The values for T3 are derived from T and Fy: T; is
equal to 1 when both T} and F, are equal to 1 and to O otherwise.
Finally, F, is equal to 1 for those combinations in which either T, or T;
or both are equal to 1. Inspection of the truth table combinations for 4,
B, C, F;, and F, of Table 4-3 shows that it is identical to the truth table
of the full-adder listed in Sec. 4-3 for x, y, z, S, and C, respectively.

Consider now a combinational circuit that has don’t-care input combina-
tions. When such a circuit is designed, the don’t-care combinations are
marked by X’s in the map and assigned an output of either a 1 or a 0,
whichever is more convenient for the simplification of the output Boolean
function. When a circuit with don’t-care combinations is being analyzed, the
situation is entirely different. Even though we assume that the don’t-care
input combinations will never occur, the fact of the matter is that if any
one of these combinations is applied to the inputs (intentionally or in
error), a binary output will be present. The value of the output will depend
on the choice for the X’s taken during the design. Part of the analysis of
such a circuit may involve the determination of the output values for the
don’t-care input combinations. As an example, consider the BCD to excess-3
code converter designed in Sec. 4-5. The outputs obtained when the six
unused combinations of the BCD code are applied to the inputs are:

Unused BCD Inputs Outputs
A B C D w x ¥y z
1 0 1 0 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 1
1 1 1 1 1 0 1 0
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These outputs may be derived by means of the truth table analysis method
as outlined in this section. In this particular case, the outputs may be
obtained directly from the maps of Fig. 4-7. From inspection of the maps,
we determine whether the X’s in the corresponding minterm squares for
each output have been included with the 1’s or the 0’s. For example, the
square for minterm m,, (1010) has been included with the 1’s for outputs w,
x, and z but not for y. Therefore, the outputs for m;, are wxyz = 1101
as listed in the above table. We also note that the first three outputs in the
table have no meaning in the excess-3 code, while the last three outputs
correspond to decimals 5, 6, and 7, respectively. This coincidence is entirely
a function of the choice for the X’s taken during the design.

48 DECODERS AND ENCODERS

Discrete elements of information are represented in digital systems by
binary numbers or binary codes. Consider, for example, a binary code or a
binary number of n bits capable of representing m < 2" discrete elements
of information. A decoder is a combinational circuit that converts a binary
code of n variables into m output lines, one for each discrete element of
information. An encoder is a combinational circuit that accepts m input
lines, one for each element of information, and generates a binary code of
n output lines. A decoder is a construction of AND gates with # inputs and
2" (or less) outputs. An encoder has OR gates with 27 (or less) inputs and
n outputs. A binary code of n bits with don’t-care combinations represents,
by definition, less than 27 elements of information. Its decoder or encoder
will use less outputs or inputs, respectively.

As an example, consider the binary to octal decoder circuit of Fig. 4-12.
The three inputs (x,y, and z) represent a binary number of three bits. The
eight outputs (Do to D;) represent octal digits O to 7. The decoder consists
of a group of AND gates that decode the input binary number. It supplies
as many outputs as there are possible input binary number combinations. In
this particular example, the elements of information are the eight octal
digits. The code for this discrete information consists of the binary numbers
represented by three bits. The operation of the decoder may be further
clarified from its input-output relations shown in Table 4-4. Observe that
the output variables are mutually exclusive because only one output can be
equal to 1 at one time. The output line whose value is equal to 1
represents the octal digit equivalent of the binary number in the input lines.

An example of an encoder is shown in Fig.4-13. The octal to binary
encoder consists of eight inputs, one for each of the eight digits, and three
outputs that generate the corresponding binary number. It is constructed
with OR gates. Its truth table is shown in Table 4-5. It is assumed that
only one input line can be equal to 1 at any time, otherwise the circuit has
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Table 4-4 Truth Table of Binary to Octal Decoder

UNURURURURURURY

Figure 4-12 Binary to octal decoder

Inputs Qutputs
x y z|Dg Dy Dy D3 Dy Ds Dg Dy
0oo00(1 0 0o 0 O O O O
001f0o 1 0 0 O O O O
o10{0 0 1 O O O O O
0110 0 o 1 0 O 0 O
1 00(0 0 0 0 1 O O0 O
101/0 0 0 0 O 1 o0 O
110/0 0 O O O O 1 O
1110 0 0 O O O o0 1

D, = x'y'7

D, = x'y'z
D, = x'yz’
D;= x'yz
D, = xy'?
Dy = xy'z
Dg = xyZ
D, = xyz

109
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Figure 4-13 Octal to binary encoder

Chap. 4

x =D, +Ds+Dg+D,

z=Dy+D3;+Ds+ D,

Table 4-5 Truth Table of Octal to Binary Encoder

Inputs Outputs

Do D, Dy D3 D4 Ds Dg D7lx y z
1 0 0 0 O O O 00 OO

o 1 0 0 0 0 0 o0}0O01

6 0 1 0 0 0 O 0010

6 0 0 1 o0 0 O 0(0 11

o 0 o0 0 1 0 O 01 0 0.

o o0 0 0 O 1 0 0|1 01

0o 0 0 0 0 0 1 0110

O 0 0 0 O O o0 11111

no meaning. Note that the circuit has eight inputs, which can give 28
possible input combinations, but that only eight of these combinations have
any meaning. The other 2% —8 input combinations are don’t-care conditions.

A BCD to decimal decoder is shown in Fig.4-14. The elements of
information in this case are the 10 decimal digits represented by the BCD
code. The function of the decoder is to supply one output for each decimal
digit. Each output is equal to 1 only when the input variables constitute a
bit combination corresponding to the decimal digit as represented in BCD.
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Figure 4-14 BCD to decimal decoder

Table 4-6 shows the input-output relations of the decoder. Only the first 10
input combinations are valid code assignments, the last six are not used and
are, by definition, don’t-care conditions. It is obvious that the don’t-care
conditions were used initially to simplify the output functions because,
otherwise, each gate would have required four inputs. For the benefit of a
complete analysis, Table 4-6 lists the outputs for the six not used combina-
tions of the BCD code, but these combinations obviously have no meaning
in this circuit.

Decoders and encoders have many applications in digital systems.
Decoders are useful for displaying discrete elements of information stored
in registers. For example, a decimal digit represented in BCD and stored in
a four-cell register may be displayed with the help of a BCD to decimal
decoder, with the outputs of the four binary cells feeding the inputs of the
decoder and the outputs of the decoder driving 10 indicator lights. The
indicator lights may be in the form of display digits, such that one decimal
digit lights up when the corresponding decoder output is a logic-1. Decoder
circuits are also useful in applications where the contents of registers need
to be determined for the purpose of decision making. Another application
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Table 4-6 Truth Table of BCD to Decimal Decoder

of Figure 4-14
Inputs Outputs
w x y z |Dg Dy D3 D4 Ds D¢ D; Dg Dy
00001 O 6 0 0 0 O 0 O
0 001|]0 1 0o 0 0 o0 O 0 o0
00100 O 0 0 0 0 O o0 o
00110 O 1 6 0 0 0 0 O
01000 O 0 1 0 0 O O0 O
0101{0 O 0O 0 1 0 0 0 O
011010 O 0 o0 0 1 0 0 o
011170 O 0O 0 0 0 1 o0 o0
10000 O 0 0 0 0 0 1 o0
1 00 1]0 O 0o o0 0 0 o0 o0 1
1 01010 0 0 0 0 0 o0 1 o0
1 0110 0O 1 0 0 0 0 0 1
11000 O 0o 1 0 0 0 1 o
1 101|0 O 6 0 1 0 o0 0 1
1 110(0 O 0 0 o 1 0 1 o0
111110 O 0o 0 o o0 1 o0 1

Chap. 4

of decoder circuits is in the generation of timing and sequencing signals for
control purposes. These applications are introduced in their appropriate

places in the following chapters.

Encoder circuits are useful for binary code formation when the discrete
elements of information are each available from a single line. An example
of an encoder circuit is demonstrated in Fig. 1-2. The box labeled “control”
contains an encoder circuit that accepts an input from each key of the
keyboard and generates the corresponding eight-bit code of the letter whose

key is struck.
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49 MULTIPLEXERS AND DEMULTIPLEXERS

Multiplexing means transmitting a large number of information units over a
smaller number of channels or lines. Demultiplexing is a reverse operation
and denotes receiving information from a small number of channels and
distributing it over a larger number of destinations. A digital multiplexer is
a combinational circuit that selects data from 2" input lines and directs it
to a single output line. The selection of input-output transfer paths is
controlled by a set of input selection lines. An example of a multiplexer is
shown in Fig. 4-15. The eight input lines I, to I, are applied to eight AND
gates whose outputs go to a single OR gate. Only one input line has a path
to the output at any particular time. The selection lines Sy, S;, and S,

Iy
)__
p)
-
I3
I, L Y
Is [

M

S, s, 5,

Figure 4-15 Eight-input digital multiplexer
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determine which input is selected to have a direct path to the output. The
eight AND gates resemble a decoder circuit and indeed decode the three
input selection lines. The output Boolean function of the eight-input multi-
plexer shows clearly how the selection is accomplished.

Y= 10S’2S,1S'0 + 11SIQS'ISO + I2S;S1S,0 + I3»S'2S1S0
+ 1,8,8180 + 155,5180 + 168,8,80 + ;8,818

Figure 4-16 is an example of a multiplexer that selects one of two data
inputs 4 and B, each input data consisting of three bits 4,, 4;, 4o and
B,, By, By. A one-bit selection line determines which input, 4 or B, is to be
applied to the outputs. The Boolean functions for the outputs are:

YO = A()S, + B(]S
Y, = 4,8 +B,S
Y, = 4,8 + B,S

In general, an m-input, k-bit multiplexer requires n selection lines (with m =

Ao

Figure 4-16 Two-input, 3-bit digital multiplexer
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2") for decoding the input data. There are k outputs, each with an OR
gate, and mk inputs, each with an AND gate. The decoding scheme is
repeated k times.

An example of a demultiplexer is shown in Fig. 4-17. A single input
line is steered to any of four identical outputs under control of two
selection lines. It consists of four three-input AND gates, each receiving the
data input along with one of the four possible combinations of the selec-
tion variables. The single input variable has a path to all four outputs, but
the information is directed to the one output specified by the two selection
lines. A demultiplexer can function as a decoder circuit if the single input
is connected permanently to a signal that corresponds to logic-1. Multiplexer
and demultiplexer devices, used in conjunction, are ideal in systems where it
is desired to multiplex many data lines, transmit on one line, and convert
back to the original data form at the receiving end for processing.

An interesting application for a multiplexer circuit is its use as a uni-
versal logic element; i.e., a circuit that implements any Boolean function of
n variables. A multiplexer circuit with k selection lines and 2k input wires
is a universal logic element for Boolean functions of k + 1 variables. For
example, the circuit of Fig. 4-15 with three selection lines S5, Si, So and
eight input lines I, through /; can be used to implement any Boolean
function of four variables Y(/, S,, Sy, So), where S,, S;, and S, are three of
the input variables and / is the fourth input variable. By expanding the

d } ¥y =1(5}50)
_} Y1=1I(51S0)
s
_3 Y3 =1(81S0)
S, -
sl

Figure 4-17 Four-output digital demultiplexer
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function into its sum of minterms, it is possible to determine values for
inputs Iy through I;. These values are either 0 or 1 or I or I'. Inputs 0 and
1 are fixed logic signals. Inputs 7 and I' are the normal and complement
values of the fourth variable.

As an example, consider the following Boolean function of four variables
expressed in sum of minterms:

YU, S,, S, So) = 2(0, 4, 8, 13)

To implement this function with the multiplexer circuit of Fig. 4-15 we
need to determine values for Iy through I,. The function is first expressed
in terms of the four variables:

Y =I'Sy8186 + I'S,8180 + 155,818 + 1S,518,

Two minterms are combined if and only if they cause the elimination of
the variable /. The first and third minterms in this example are combined
and Y can be expressed as follows:

Y = S38,Sy + I'S,S\Spy + IS,57S0

Comparing this expression with the Boolean function for the multiplexer
given above, we determine the following input values:

Iy =1
I, =T
Is =1

11 =12=13=16=I7=0

This example demonstrates the procedure for determining the values of I
to I; from the minterm expression of the Boolean function.

PROBLEMS

4-1. A combinational circuit has four inputs and one output. The output is
equal to 1 when: (1)all the inputs are equal to 1 or (2) none of the
inputs are equal to 1 or (3) an odd number of inputs are equal to 1.

(a) Obtain the truth table.

(b) Find the simplified output function in sum of products.
(c) Find the simplified output function in product of sums.
(d) Draw the two logic diagrams.

4-2. A three-digit binary number is represented by the Boolean variables w,
x, ¥y, and z. w represents the sign of the number so that w =1 if the
number is negative and w = 0 if the number is non-negative (positive or
zero). x, y, and z represent the magnitude of the number, with z being
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4-3.

4-4.

4-8.

49.

4-10.

4-12.
4-13.

4-14.

the least significant digit. Design a combinational circuit that fulfills
the following requirements: (1) if the input number is non-negative, the
output number is equal to the input number minus two; (2)if the
input number is negative, the output number is equal to the input
number plus two.

Design a combinational circuit that accepts a three-bit number and
generates an output binary number equal to the square of the input
number.

It is necessary to multiply two binary numbers, each two bits long, in
order to form their product in binary. Let the two numbers be
represented by a,,ao and by,by, where subscript O denotes the least
significant bit.

(a) Determine the number of output lines required.
(b) Find the simplified Boolean expressions for each output.

Repeat Prob. 4-4 to form the sum (instead of the product) of the
two binary numbers.

Obtain the simplified Boolean functions of the full-adder and full-
subtractor in product of sums and draw the logic diagrams.

The half-adder is a circuit that adds two bits. The full-adder is a
circuit that adds three bits. Now design a circuit that adds four bits.
Determine the number of outputs necessary to form the sum and
carries and find their simplified Boolean functions.

Design a combinational circuit with four input lines that represent a
decimal digit in BCD and four output lines that generate the 9’s
complement of the input digit.

Design a combinational circuit whose input is a four-bit number and
whose output is the 2’s complement of the input number.

Design a combinational circuit that multiplies by 5 an input decimal
digit represented in BCD. The output is also in BCD. Show that the
outputs can be obtained from the input lines without using any logic
gates.

. Design a combinational circuit that detects anerror in the representa-

tion of a decimal digit in BCD. In other words, obtain a logic
diagram whose output is logic-1 when the inputs contain an unused
combination in the code.

Implement a full-subtractor with two half-subtractors and an OR gate.

Show how a full-adder can be converted to a full-subtractor with the
addition of omne inverter circuit.

Design a combinational circuit that converts a decimal digit from the
8,4,-2,-1 code to BCD.

. Design a combinational circuit that converts a decimal digit from the

2,4,2,1 code to the 8,4,-2,-1 code.
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4-16. Obtain the logic diagram that converts a four-digit binary number to
a decimal number in BCD. Note that two decimal digits are needed
since the binary numbers range from 0 to 15.

4-17. Obtain the logic diagram of a circuit that compares two four-bit
numbers. Use the algorithm given in Sec. 4-6.

4-18. Show the external connections between two three-bit comparators
(Fig. 4-10) that will form a comparator circuit for two numbers of
five bits each.

4-19. Analyze the two output combinational circuits shown in Fig. P4-19.
Obtain the Boolean functions for the two outputs and explain the
circuit operation.

4-20. Derive the truth table of the circuit shown in Fig. P4-19.

4-21. Analyze the circuit shown in Fig. P4-21 and explain the circuit
operation.

Y, Y, Y, Y,
'< I] 5
] p
V 0
I, 1, I3 14

4-22. The circuit of Fig.P4-21 establishes a given relation between the
inputs and outputs depending on the value of the selection lines S,
and Sq¢. Extend the circuit to seven outputs; that is, add outputs Ys,
Y¢, and Y; and the needed gates to accomplish an equivalent
relation.

4-23. Obtain the logic diagram of an excess-3 to decimal decoder.
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424. A BCD to seven-segment decoder is a combinational circuit that

accepts a decimal digit in BCD and generates the appropriate outputs
for selection of segments in a display indicator used for displaying the
decimal digit. The seven outputs of the decoder (a, b, ¢, d, e, f, 8)
select the corresponding segments in the display as shown in
Fig. P4-24(a). The numeric designation chosen to represent the
decimal digit is shown in Fig. P4-24(b).

| e 1 | | R | 1 |

a
| |,,|||b| 0 T A O O
S
e

(b) Numerical designation for display

(a) Segment designation

4-25.
4-26.

4-27.

4-28.

4-29.

4-30.

4-31.

(a) Design a seven-segment decoder using all don’t-care conditions.

(b) Show the resulting displays generated when the unused bit combina-
tions of the BCD code are applied to the inputs.

(c) Redesign the decoder so that unused combinations give meaningless
displays.

Obtain the logic diagram of a decimal to BCD encoder.

Design an encoder whose inputs are the letters 4 to I and whose
outputs represent the corresponding character in the six-bit internal
code given in Table 1-5.

Six input lines must be decoded to obtain 64 output lines. AND
gates are available with up to six inputs maximum. Each output of an
AND gate can be connected to no more than 10 other AND gate
inputs. Each external input can be connected to an inverter and no
more than 10 AND gate inputs. Each inverter output can be con-
nected to no more than 10 AND gate inputs. Determine a gate
configuration for the decoder.

Show the logic diagram of a three-input, four-bit digital multiplexer.

Show the logic diagram of an eight-output digital demultiplexer. Show
how this circuit in conjunction with the multiplexer of Fig. 4-15 can
be used to multiplex eight data lines, transmit one line, and convert
back to the original line at the receiving end.

Implement the following Boolean function with an eight-input digital
multiplexer.

Y, S,, 81, So) = 2(2, 4, 7, 10, 12, 14)

Implement a full-adder circuit with two four-input digital multiplexers.



5 GATE IMPLEMENTATION

5-1 INTEGRATED CIRCUITS

An integrated circuit (IC) is a small silicon crystal called a “chip” contain-
ing electronic components such as transistors, diodes, resistors, and
capacitors. The various components are interconnected inside the chip to
form an electronic circuit. The chip is mounted in a metal or plastic
package and connections are welded to external pins. Integrated digital
circuits with several logic gates are available in small packages like those
shown in Fig. 5-1. Integrated circuits differ from conventional circuits in
that individual components cannot be separated or disconnected and the
circuit inside the package is accessed only through external pins. The
benefits derived from ICs are: (1) substantial reduction in size, (2) substan-
tial reduction in cost, (3) high reliability against failures, (4) increase in
operating speed, and (5) reduction of externally wired connections.

As the technology of ICs has improved, the number of devices and
components which can be put on a single silicon chip has increased con-
siderably. The differentiation between those chips that have a few internal
gates and those having tens or hundreds of gates is made by a customary
reference to a package as being either a small-, medium-, or large-scale
integration device. Several logic gates in a single package make it a small-
scale integration (SSI) device. To qualify as medium-scale (MSI), a device
must perform a complete logic function and have a complexity of approxi-
mately 10 gates or more. A large-scale integration (LSI) device performs a
logic function with more than a hundred gates.

120
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= T

Flat package Lo TO-99 package
Dual-in-line package

Figure 5-1 Integrated circuit packages

Examples of MSI functions are those introduced in Ch. 4: adders, sub-
tractors, code converters, comparators, decoders, encoders, multiplexers, and
demultiplexers. These functions are used extensively in the design of digi-
tal systems and are classified as standard items. These and similar digital
functions are available in one IC package like the one shown in Fig. 5-1.
Digital integrated circuits in an MSI package provide the logic designer with
standard functional building blocks that can be very efficiently connected to
satisfy a large variety of logic systems requirements.

An example of an LSI function is the general purpose accumulator
register introduced in Ch. 9. LSI devices provide greater circuit complexity
and may, at times, encompass the entire digital system in one chip. A
digital computer may be constructed with only a few LSI devices to
provide an extremely efficient method of packaging.

MSI and LSI devices provide a considerable decrease in package count
over the same design using individual gates from SSI devices. This reduction
in package count is significantly advantageous because the reliability of a
system is a function of the number of packages used. In addition, fewer
packages also mean fewer connections and less wiring. Higher speed of
operation is achieved since interpackage delays are eliminated. Other advan-
tages of MSI and LSI are reduction in power consumption, improvement of
noise immunity, and a considerable savings in costs.

Logic diagrams of digital systems considered throughout the book are
shown in detail up to the individual gates and their interconnections. Such
logic diagrams are useful for demonstrating the logical construction of a
particular function. However, it must be realized that, in practice, the
function may be obtained from an MSI or LSI device and the user has
access only to external inputs and outputs but not to inputs or outputs of
intermediate gates. For example, a designer who wants to incorporate a
decoder in his system is more likely to choose such a function from an
available MSI integrated circuit instead of designing an individual gate
structure.



122 GATE IMPLEMENTATION Chap. 5
52 DIGITAL LOGIC GATES

In Sec. 2-6 we defined eight binary operators and gave them the foilow-
ing characteristic names: AND, OR, inhibition, implication, exclusive-or,
equivalence, NOR, and NAND. Each operator defines a logical function of
two variables. The AND and OR operators together with the unary NOT
operator express Boolean functions. For this reason, logic gates that perform
these functions have been employed to implement Boolean functions. The
possibility of constructing logic gates for the other six binary operators is
of practical interest. Factors to be weighed. when considering the construc-
tion of other types of logic gates are: (1) the feasibility and economy of
producing the gate with physical components, (2) the possibility of extend-
ing the gate to more than two inputs, (3) the basic properties of the binary
operator such as commutativity and associativity, and (4) the ability of the
gate to implement Boolean functions alone or in conjunction with other
gates.

The binary operators “inhibition” and “implication” are not commutative
and are thus impractical for use as standard logic gates. The exclusive-or and
equivalence operations have many excellent characteristics as candidates for
logic gates but are expensive to construct with physical components. They
are available as standard logic gates in IC packages but are usually con-
structed internally with other standard gates (see Fig. 5-28). The NAND
and NOR functions are extensively used as standard logic gates and are in
fact more popular than the AND and OR gates. This is because NAND and
NOR gates are easily constructed with transistor circuits and because Bool-
ean functions can be easily implemented with them.

The block diagram symbols for the digital logic gates of exclusive-or and
equivalence are shown in Fig. 5-2. The symbol for the exclusive-or gate is
similar to the OR gate except for the curved line on the input side. Since
equivalence is the complement of exclusive-or, it is customary to use
identical symbols for both except for the small circle in the output of the
equivalence gate. Henceforth, a small circle in the output (or input) of a
gate will designate complementation.

The NAND function is the complement of the AND function. For this
reason we use identical symbols with the exception of the small circle in
the output of the NAND gate as shown in Fig. 5-3(a). Similarly, the NOR
and OR functions, being the complement of each other, use the same
symbol except for the circle in the output of the NOR gate as shown in
Fig. 5-3(b). It should be clear now why the symbol for the inverter circuit
has been drawn with a small circle. It differentiates it from a non-inverting
amplifier as shown in Fig. 5-4(a). A non-inverting amplifier is used for
signal amplitude restoration or for signal amplification when a large amount
of power is needed to drive heavy loads.

The exclusive-or and equivalence gates are rarely extended to more than
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A—_—):D__ AeB 4 AOB
B = AB'+A'B B —=AB+A'B
(a) (b)

Figure 5-2 Symbols for logic gates (a) exclusive-or, (b) equivalence

A ] A
i DO-—ATB 5 ALB
—(AB)’ = (A+B)
(a)

(b)

Figure 5-3 Symbols for logic gates (a) NAND, (b) NOR

A——D—A A {>c A
(a)

(b)

Figure 5-4 Symbols for (a) non-inverting amplifier, (b) inverter
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two inputs. The NOR and NAND gates can be extended to many inputs
provided the definition of the operation is slightly modified. The difficulty
is that the NOR and NAND operators are not associative; ie., (x ¢ y) + z

# x { (v | z) as shown below and in Fig. 5-5.
GANtz=(x+y) +z2]'=@x+y 7
xl@l)=x+@+2)] =x"(+2)

]

To overcome this difficulty, we define the multiple-input NOR (or NAND)

gate as a complemented OR (or AND) gate.

@INtz=x+yz

X

__Do—x¢()’l 2)=x'"(y+2)
) >
z

Figure 5-5 Demonstrating the non-associativity of the NOR operator;
iNIlz#FExx @ 2)
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Thus by definition we have:
xdylz=(x+y+2)
xty?tz=(xyz)

The symbols for the three-input gates are shown in Fig. 5-6. NOR and
NAND are sometimes called OR-invert and AND-invert to conform with the
generalized definition. In writing cascaded NOR and NAND operations using
the symbolic operators (1) and (1) as in Fig. 5-5, one must use the correct
parentheses to signify the proper sequence of these operations. The opera-
tion signifies a multiple-input gate when no parentheses are included. NAND
and NOR gates are discussed in more detail in Secs. 5-5 and 5-6. Functions
suitable for implementation with exclusive-or and equivalence gates are
presented in Sec. 5-8.

X e——
£>o—xwlz:(x+y+z)' 4 ‘ Jo xtytz=(xyz)y

(a) NOR (b) NAND
Figure 5-6 Three-input NOR and NAND gates

LSRR

5-3 POSITIVE AND NEGATIVE LOGIC

The relation between a binary signal and a binary variable was discussed in
Sec. 1-8. A binary signal exists in one of two values except during transi-
tion. One signal value represents logic-1 and the other, logic-0. Since two
signal values are assigned to two logic values, there exists two different
assignments of signals to logic. Because of the principle of duality of
Boolean algebra, an interchange of signal value assignment results in a dual
function implementation. The consequences of an interchange of signal
assignment is investigated in this section.

Consider the two values of a binary signal as shown in Fig. 5-7. One
value must be higher in amplitude than the other since the two values must
be different in order to distinguish between them. Designate the higher
amplitude by H and and the lower by L. There are two choices for signal
value assignment. Choosing the high amplitude H to represent logic-1 as
shown in Fig. 5-7(a) defines a positive logic system. Choosing the low
amplitude L to represent logic-1 as in Fig. 5-7(b) defines a negative logic
system. The terms positive and negative are somewhat misleading since both
signal values may be positive or both may be negative. It is not the polarity
of the signal that determines the type of logic but the assignment according
to their relative magnitude.

Consider for example, a two-input AND gate whose truth table is given
in Table 5-1(a). Assume that we are operating with a positive logic system
so that logic-1 is equivalent to signal H and logic-O to signal L. By a direct
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Logic Signal Logic Signal
value value value value
1 H 0 H
0 — L 1 L

(a) Positive logic (b) Negative logic

Figure 5-7 Signal amplitude assignment and type of logic

Table 5-1 Positive Logic AND, Negative Logic OR

(a) (b) (c)
x y |z x y |z x y |z
0 0 ]|O L L L 1 1 1
0 110 L H|L 1 0 1
1 0¢}O0 L L 0 111
1 1 1 H H | H 0 0|0

substitution, we obtain the input-output signal amplitude relations of the
circuit as shown in Table 5-1(b). Similarly, the truth table of a two-input
OR gate in Table 5-2(a) translates into the positive logic assignment of
Table 5-2(b). It is important to realize that part (b) of the two tables
defines the input-output behavior of the physical circuit and that the logic
assignment of 1 and O is chosen arbitrarily by the user. Therefore, if we
take the same piece of hardware whose physical behavior is specified in
Table 5-1(b) and employ negative logic, the L signal becomes logic-1 and
the H signal logic-0. A direct substitution of logic values for signal values

Table 5-2 Positive Logic OR, Negative Logic AND

(a) (b) (c)
x ¥y |z x y\lz x y |z
o 0 —O_ L L |L 1 1 —1—
0 171 L H\|H 1 010
1 01 L |H 0o 110
1 11 H|H 0 0|0
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gives the relations listed in Table 5-1(c), from which we obtain the OR
function. Similarly, the AND function of Table 5-2(c) is obtained from the
negative logic choice of the circuit specified by Table 5-2(b). From these
observations we can easily conclude that a positive logic AND gate and a
negative logic OR gate are the same piece of hardware. A similar statement
can be made for a positive logic OR gate and a negative logic AND gate.
The type of logic gate we choose to call the physical circuit depends
entirely on whether we choose positive or negative logic.

What has been said with respect to AND and OR in conjunction with
positive and negative logic also applies to NOR and NAND because these
two functions are the dual of each other. Thus, a circuit that performs the
logic function of NOR when positive logic symbols are used will perform
the function of NAND for negative logic and vice versa.

The choice of positive or negative logic for a given set of standard logic
circuits is arbitrary. For this reason, standard functions in MSI devices are
sometimes described in tables in terms of H and L signals instead of 1 and
0. The choice of positive or negative logic in many instances has been
dictated by the type of transistors employed. Circuits using NPN-type
transistors use positive signals and are usually assigned positive logic values,
while circuits using PNP-type transistors use negative signals and are usually
assigned negative logic values. This is the reason for the terminology of
positive and negative logic.

5-4 SIMPLIFICATION CRITERIA

The purpose of Boolean function simplification is to obtain an algebraic
expression that, when implemented, results in a low-cost circuit. However,
the criteria that determine a low-cost circuit or system must be defined if
we are to evaluate the success of the achieved simplification. It. has pre-
viously been mentioned that criteria for simplification depend on the con-
straints imposed by the particular application. The subject of switching
theory is concerned, among other things, in finding algorithms for simplify-
ing Boolean functions. The best known algorithm for simplifying Boolean
functions is the tabulation (or map) method presented in Ch. 3. This
method gives an answer in one of the two standard forms and achieves a
minimization of the number of terms and the number of literals of the
function. Other algorithms may be found in the literature of switching
theory, but they usually satisfy a narrow set of criteria and are not general
enough for inclusion in a textbook.* The simplest approach available to a
logic designer is to use the map method in conjunction with algebraic
manipulation and his skill, experience, and ingenuity. The labor involved

*The best reference for articles on switching theory is the IEEE Transactions on
Computers.
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may be reduced if a computer program for simplifying Boolean functions is
available.

Although algorithms that satisfy all possible criteria for simplification are
not available, it is important that the designer be familiar with the different
requirements, restrictions, and limitations of a practical situation. Criteria
for Boolean function simplification may be divided into three broad cate-
gories: (1) reduction in the number of components and wires, (2) reduction
in propagation delay, and (3) loading constraints. Each of these categories is
discussed below.

Number of Components and Wires

It seems reasonable that we would try to minimize the following items if
we wanted to reduce the cost of implementing digital systems:

1. The number of logic gates.
2. The number of inputs to a gate.
3. The number of integrated circuit packages.

4. The number of printed-circuit boards (IC packages are sometimes
mounted on printed circuit boards).

5. The number of connecting wires.

The map (or tabulation) method minimizes the number of logic gates
and inputs to a gate provided we are satisfied with a standard form
implementation. Given two circuits that perform the same function, the one
that requires less gates is more likely to be preferable because it will cost
less. This is not necessarily true when integrated circuits are used. Since
several logic gates (or an entire function) are included in a single IC
package, it becomes economical to use as many of the gates from an
already used package as possible even if, by doing so, we increase the total
number of gates. Moreover, some of the interconnections among gates in an
IC are internal to the chip and it is more economical to use as many
internal interconnections as possible in order to minimize the number of
wires between external pins. With integrated circuits, it is not the count of
logic gates that determines the cost but the number and type of ICs used
to implement the given function. In order to minimize the number of ICs
and the number of external interconnections, we must specify the physical
layout and construction of the various components. Computer programs that
consider the pertinent physical variables are sometimes used for optimizing
the cost of digital systems.
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Propagation Delay and Logic Levels

The signals through a logic gate take a certain amount of time to
propagate from the inputs of the circuit to its output. This interval of time
is defined as the propagation delay of the circuit. The signals that travel
from the inputs of a combinational circuit to its outputs pass through a
series of gates. The sum of the propagation delays through the gates is the
total propagation delay of the circuit. A reduced propagation delay means a
faster operation. When speed of operation is important, logic gates must
have small propagation delays and combinational circuits must have a min-
imum number of series gates between inputs and outputs.

The input signals in most combinational circuits are applied simul-
taneously to more than one gate. All those gates that receive their inputs
exclusively from external inputs constitute the first logic level of the circuit.
Gates that receive at least one input from an output of a first logic level
gate constitute the second level and similarly for third and higher levels.
The total propagation delay through the combinational circuit is equal to
the propagation delay through a gate times the number of logic levels in
the circuit. Thus, a reduction in the number of levels results in a reduction
of signal delay and a faster circuit. The reduction of the propagation delay
in circuits may be more important than the reduction in the number of
gates if speed of operation is a major factor.

A Boolean function expressed in sum of products or product of sums
can be implemented with two levels of gates provided both normal and
complement inputs are available. A Boolean function expressed in one of
the standard forms is said to provide a two-level implementation. Obviously,
if only the normal input variables are available, the inverters that generate
the complements constitute a third level in the implementation.

Because any function can be written as a sum of products, any function
can be implemented with a two-level implementation. The use of two-levels
provides the least propagation delay and thus the fastest circuit. If speed is
unimportant, a multilevel implementation of less gates is normally more
desirable. General algorithms for obtaining a simplified multilevel implemen-
tation are not available. The designer must resort to algebraic manipulation
or to any available computer program that searches for a minimum gate
implementation under certain given conditions. Examples of multilevel
impleméntation can be found in Ch. 4. These are: the full-adder of
Fig. 4-11 (five levels), the code converter of Fig. 4-8 (four levels), and the
comparator of Fig. 4-10 (four levels).

Fan-In, Fan-Out, and Loading

Fan-in specifies the number of inputs to a gate. For example, a four-
input AND gate has a fan-in of four. For logic gates constructed with
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discrete components, an increase in fan-in usually means adding more inputs
by inserting more diodes or resistors. The fan-in limitation in this case is
determined by the ability of the circuit to support additional inputs and
still function within the allowable tolerance. The fan-in of IC gates is
determined mostly from the limitation of external pins in the package. For
example, the dual-in-line package shown in Fig. 5-1 has 14 external pins.
One pin is needed for supply voltage and one for ground connection,
leaving 12 for inputs and outputs. Suppose it is desirable to include one
gate in a package. The largest fan-in that can be achieved is 11 since one
pin must be available for the output. If it is desired to include two gates in
one IC package with equal number of inputs per gate, then the largest
fanin for each is five (two gates, each with five inputs and one output,
require a total of 12 pins). When Boolean functions are implemented with
IC gates, the fan-in of available gates must be considered for minimizing the
number of IC packages.

Fan-out specifies the number of “standard loads” an output of a gate
can drive without impairing its normal operation. A standard load may be
an input to a gate, to an inverter, or to any other circuit which must be
specified in defining fan-out. Sometimes the term loading is used instead of
fan-out. This term is derived from the fact that the output of a gate can
supply a limited amount of power, above which it ceases to operate
properly. Each circuit connected to the output consumes a certain amount
of power, so that each additional circuit adds to the “load” of the gate.
“Loading rules” are usually listed for a family of standard digital circuits.
These rules specify the maximum amount of loading allowed for each
output of each circuit. Exceeding the specified maximum load may cause a
malfunction because the circuit cannot supply the power demanded from it.
The loading (or fan-out) capabilities of a gate must be considered when
simplifying Boolean functions. Care must be taken not to develop expres-
sions that result in an overloaded gate. Non-inverting amplifiers (whose
symbol is shown in Fig. 5-4) are sometimes employed to provide additional
driving capabilities for heavy loads.

5-5 NAND LOGIC

Combinational circuits are more frequently constructed with NAND or NOR -
gates than with AND, OR, and NOT gates. NAND and NOR circuits are
superior to AND and OR gates from the hardware point of view, as they
supply outputs that maintain the signal value without loss of amplitude. OR
and AND gates sometimes need amplitude restoration after the signal travels
through a few levels of gates. Because of the prominence of NAND and
NOR gates in the design of combinational circuits, rules and procedures
have been developed for the conversion from Boolean functions given in
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terms of AND, OR, and NOT into equivalent NAND or NOR logic dia-
grams. The procedures for NAND logic are presented in this section and for
NOR logic in the next section. Since the NOR operation is the dual of the
NAND, the rules and procedures for NOR logic are the dual of those for
NAND logic.

Universal Gate

The NAND gate is said to be a universal gate because any digital system
can be implemented with it. Not only combinational circuits but sequential
circuits as well can be constructed with this gate. This is because the
flip-flop circuit (the memory element most frequently used in sequential
circuits) can be constructed from two NAND gates connected back to back
as shown in Sec. 6-2.

To show that any Boolean function can be implemented with NAND
gates, we need only show that the logical operations AND, OR, and NOT
can be implemented with NAND gates. The implementation of the AND,
OR, and NOT operations with NAND gates is shown in Fig. 5-8. The NOT
operation is obtained from a one-input NAND gate, actually another symbol
for an inverter circuit. The AND operation requires two NAND gates. The
first produces the inverted AND and the second acts as an inverter to
obtain the normal output. The OR operation is achieved through a NAND
gate with additional inverters in each input.

A convenient way to implement a combinational circuit with NAND
gates is to obtain the simplified Boolean functions in terms of AND, OR,
and NOT and convert the functions to NAND logic. The conversion of the
algebraic expression from AND, OR, and NOT operations to NAND opera-

A ——

A’ NOT (inverter)
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Figure 5-8 Implementation of NOT, AND or OR by NAND gates
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tions (using t symbol) is usually quite complicated because it involves a
large number of applications of DeMorgan’s theorem. This difficulty is
avoided by the use of simple circuit manipulations and simple rules as
outlined below.

Boolean Function Implementation—Block
Diagram Method

The implementation of Boolean functions with NAND gates may be
obtained by means of a simple block diagram manipulation technique. This
method requires that two other logic diagrams be drawn prior to obtaining
the NAND logic diagram. Nevertheless, the procedure is very simple and
straightforward:

1. From the given algebraic expression, draw the logic diagram with
AND, OR, and NOT gates. Assume that both the normal and com-
plement inputs are available.

2. Draw a second logic diagram with the equivalent NAND logic as given
in Fig. 5-8 substituted for each AND, OR, and NOT gate.

3. Remove any two cascaded inverters from the diagram since double
inversion does not perform a logic function. Remove inverters con-
nected to single external inputs and complement the corresponding
input variable. The new logic diagram obtained is the required NAND
gate implementation.

This procedure is illustrated in Fig. 59 for the function:
F=A (B+CD)+ BC'

The AND/OR implementation of this function is drawn in the logic diagram
of Fig. 59(a). For each AND gate we substitute a NAND gate followed by
an inverter; for each OR gate we substitute input inverters followed by a
NAND gate. This substitution follows directly from the logic equivalences of
Fig. 5-8 and is drawn in the diagram of Fig. 5-9(b). This diagram has seven
inverters and five two-input NAND gates listed with numbers inside the gate
symbol. Pairs of inverters connected in cascade (from each AND box to
each OR box) are removed since they form double inversion. The inverter
connected to input B is removed and the input variable is designated by B
The result is the NAND logic diagram shown in Fig. 59(c), with the
number inside each symbol identifying the gate from Fig. 5-9(b).

This example demonstrates that the number of NAND gates required to
implement the Boolean function is equal to the number of AND/OR gates,
provided both the normal and complement inputs are available. If only the
normal inputs are available, inverters must be used to generate any required
complemented inputs.
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(a) AND/OR implementation
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(b) Substituting equivalent NAND functions from Fig. 5-8

B
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(c) NAND implementation

Figure 59 Implementation of F = A(B + CD) + BC' with NAND gates

A second example of NAND implementation is shown in Fig. 5-10. The
Boolean function to be implemented is:

F=(A+B')(CD + E)
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(b) Substituting equivalent NAND functions
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Figure 5-10 Implementation of (4 + B') (CD + E) with NAND gates

The AND/OR implementation is shown in Fig. 5-10(a) and its NAND logic
substitution in Fig. 5-10(b). One pair of cascaded inverters may be
removed. The three external inputs E, A, and B’, which go directly to
inverters, are complemented and the corresponding inverters removed. The
final NAND gate implementation is in Fig. 5-10(c).
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The number of NAND gates for the second example is equal to the
number of AND/OR gates plus an additional inverter in the output (NAND
gate number 5). In general, the number of NAND gates required to imple-
ment a function equals the number of AND/OR gates, except for an
occasional inverter. This is true provided both normal and complement
inputs are available because the conversion forces certain input variables to
be complemented.

The block diagram method is somewhat tiresome to use because it
requires the drawing of two logic diagrams to obtain the answer in a third.
With some experience, it is possible to reduce the amount of labor by
anticipating the pairs of cascaded inverters and the inverters in the inputs.
Starting from the procedure just outlined, it is not too difficult to derive
general rules for implementing Boolean functions with NAND gates directly
from an algebraic expression.* We shall now formulate the rules for conver-
sion when the Boolean functions are expressed in sum of products or
product of sums.

Two-Level Implementation—Sum of Products

The derivation of the NAND logic diagram when the Boolean function is
expressed in sum of products is simple and direct. The rule for this
conversion can be deduced from inspection of Fig. 5-11, where a typical
sum of product expression is implemented:

F=AB+CD+ E

A sum of products expression is always implemented with a group of AND
gates in the first logic level and a single OR gate in the second level, as
shown in Fig. 5-11(a). The substitution of the NAND equivalent logic as
drawn in Fig. 5-11(b) clearly shows that each first-level AND produces an
output inverter and each input of the OR gate produces an input inverter.
The pairs of cascaded inverters can be removed as shown in the final
diagram of Fig. 5-11(c). A term with one literal is an exception, since the
input variable is applied directly to the input of the OR gate. This is
clearly shown in the diagram where the variable E, being a term of one
literal, is complemented during the conversion. The rule for obtaining the
NAND logic diagram directly from a Boolean function expressed in sum of
products should be clear from this example:

1. Draw a NAND gate for each AND term of the function that has at
least two literals. The inputs to each NAND gate are the literals of
the term. This constitutes a group of first-level gates.

*A comprehensive set of rules for both NAND and NOR logic can be found in
reférence (1) at the end of this chapter.
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Figure 5-11 Sum of products implementation with NAND gates

2. Draw a single NAND gate in the second level with inputs coming
from outputs of first-level gates.

3. Any literal that appears as a term by itself is complemented and
applied as input to the second-level NAND gate.

Three-Level Implementation—Product of Sums

A Boolean function expressed in product of sums when implemented
with NAND gates requires three levels of gates, the third and last level
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being an inverter. The rules of conversion from the algebraic expression to
the logic diagram can be deduced from the example shown in Fig. 5-12,

where the following function is implemented:

F=(4+B)(C+D)E

A product of sums expression is always implemented with a group of OR
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Figure 5-12 Product of sums implementation with NAND gates



Sec. 5-6 NAND LOGIC 137

gates in the first level and a single AND gate in the second level as shown
in Fig. 5-12(a). The substitution of NAND equivalent logic, as in
Fig. 5-12(b), clearly shows that each OR gate produces an input inverter
and that the AND gate produces a single output inverter. There are no pairs
of inverters that can be removed, but inverters connected to external inputs
can be removed provided the input variables are complemented. The literal
that forms a single term goes directly to the input of the second level and
is not complemented during the conversion. The final NAND logic diagram
is shown in Fig. 5-12(c). From it we can deduce the rule for obtaining the
NAND logic diagram directly from a Boolean function expressed in product
of sums:

1. Draw a NAND gate for each OR term of the function that has at
least two literals. The inputs to each NAND gate are the complements
of the literals in the term. This constitutes a group of first-level
gates.

2. Draw a single NAND gate in the second level with inputs coming
from outputs of first-level gates.

3. Any literal that appears as a term by itself is applied as input to the
second-level NAND gate.

4. Draw a third-level NAND gate with a single input connected to the
output of the second-level NAND gate.

In stating the rules for the sum of products and product of sums
implementations it was assumed that both the normal and complement
inputs were available. If only the normal inputs are available, the inverters
that generate the complements constitute one additional logic level.

The following example demonstrates the derivation of the NAND logic
diagrams for a Boolean function initially expressed in canonical form.

EXAMPLE 5-1. Implement the following Boolean function with NAND

gates.

F(,B CD)=%2(0,1,3,7,8,9, 10, 14, 15)
First, the expression must be simplified. This is done by using the map
shown in Fig. 5-13. In (a) we combine the 1’s to obtain a simplified
expression in sum of products:

F=RB'C' + A'CD + BCD + ACD'
Following the rules for implementing a sum of products expression, we
obtain the NAND logic diagram of Fig. 5-14(a).

A different NAND gate structure is obtained when the function is
simplified in a product of sums form. This is achieved by combining the O’s
of the function as shown in the map of Fig. 5-13(b) and then complement-
ing to obtain:

F=B+0C0U+C' +D)A'"+B+C' +D)

Following the rules for implementing a product of sums expression, we
obtain the NAND logic diagram of Fig. 5-14(b). Both implementations
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Figure 5-14 NAND implementation of the Boolean function of

Example of 5-1

(b) Three-level from product of sums

require five NAND gates, but one has two logic levels and the other, three.
If for any reason only the complemented output of this function is
required, the output inverter in Fig. 5-14(b) can be removed and the circuit

becomes more economical than the one of Fig. 5-14(a).

Analysis Procedure

Up to now we have considered the problem of deriving a NAND logic
diagram from a given Boolean function. The reverse process is the analysis
problem which starts with a given NAND logic diagram and culminates with
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a Boolean expression or a truth table. The analysis of NAND logic diagrams
follows the same procedures presented in Sec. 4-7 for the analysis of
combinational circuits. The only difference is that NAND logic requires a
repeated application of De Morgan’s theorem. We shall now demonstrate the
derivation of the Boolean function from a logic diagram. We shall then
proceed to show the derivation of the truth table directly from the NAND
logic diagram. Finally, a method will be presented for converting a NAND
logic diagram to AND/OR/NOT logic diagram by means of block diagram
manipulation.

Derivation of the Boolean Function by
Algebraic Manipulation

The procedure for deriving the Boolean function from a logic diagram is
outlined in Sec. 4-7. This procedure is demonstrated for the NAND logic
diagram shown in Fig. 5-15, which is the same as Fig. 5-9(c). First, all gate
outputs are labeled with arbitrary symbols. Second, the Boolean functions
for the outputs of gates that receive only external inputs are derived:

T, =(CD) =C'+D

T, =(BCY =B"+C
The second form follows directly from De Morgan’s theorem and may, at
times, be more convenient to use. Third, Boolean functions of gates which
have inputs from previously derived functions are determined in consecutive
order until the output is expressed in terms of input variables:

T; = (B'T,) =(B'C' + BD"Y
=B+C)B+D)=B+(CD

Ty = (AT5) = [4 (B + CD)]'

F=(T,T,) ={(BCY [AB+cD)]'}’
=BC' + A (B + CD)

C —— T,

D ————

T3

B’

T4

- D—
C'—

Figure 5-15 Analysis example
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Derivation of the Truth Table

The procedure for obtaining the truth table directly from a logic diagram
is also outlined in Sec. 4-7. This procedure is demonstrated for the NAND
logic diagram of Fig. 5-15. First, the four input variables, together with
their 16 combinations of 1’s and 0’s, are listed as in Table 5-3. Second, the
outputs of all gates are labeled with arbitrary symbols as in Fig. 5-15.
Third, we obtain the truth table for the outputs of those gates that are a
function of the input variables only. These are T, and T,. T, = (CD), so
we mark 0’s in those rows where both C and D are equal to 1 and fill the
rest of the rows of 7, with 1’s. Also T, = (BC")', so we mark 0’s in those
rows where B = land C = 0, and fill the rest of the rows of T, with 1.
We then proceed to obtain the truth table for the outputs of those gates

Table 5-3 Truth Table for the Circuit of Figure 5-15

A B ¢ D || 13| 10| F

0 0 0 o0 1 1 0 1 0
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that are a function of previously defined outputs until the column for the
output F is determined. It is now possible to obtain an algebraic expression
for the output from the derived truth table. The map drawn in Fig. 5-16 is
obtained directly from Table 5-3 and has 1’s in the squares of those
minterms for which F is equal to 1. The simplified expression obtained
from the map is

F=AB + ACD + BC' = A (B + CD) + BC'

which is the same as the one of Fig. 5-9, thus verifying the correct answer.

cD ¢

48,90 01 11 10

00
01 1 1
B
11 Ll 1 1] 1 J
A
9 ]
| —
D

F —=AB + BC’' + ACD

Figure 5-16 Derivation of F from Table 5-2

Block Diagram Transformation

It is sometimes convenient to convert a NAND logic diagram to its
equivalent AND/OR/NOT logic diagram to facilitate the analysis procedure.
By doing so, the Boolean function can be derived more easily without
employing De Morgan’s theorem. The conversion of logic diagrams is accom-
plished through a process reverse from that used for implementation. A
convenient equivalent symbol for a NAND gate for the conversion is shown
in Fig. 5-17(b). Instead of representing a NAND gate with an AND symbol
followed by a circle, we can represent it by an OR gate preceded by circles
in all inputs. The invertOR symbol for a NAND gate follows from
De Morgan’s theorem and from the convention that small circles denote
complementation.

The conversion of a NAND logic diagram to an AND/OR/NOT diagram
is achieved through a change in symbols from AND-invert to invert-OR in
alternate levels of gates. The first level to be changed to an invert-OR
symbol should be the last level. These changes produce pairs of circles along
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Figure 5-17 Two symbols for NAND gate

the same line which can be removed since they represent double com-
plementation. Moreover, a one-input AND or OR gate can be removed since
it does not perform a logical function. A one-input AND or OR with a
circle in the input or output is changed to an inverter circuit.

This procedure is demonstrated in Fig. 5-18. The NAND logic diagram of
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(a) NAND logic diagram
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(b) Substitution of invert-OR symbols in alternate levels

U

'
(c) AND/OR/NOT logic diagram

Figure 5-18 Conversion of NAND logic diagram to AND/OR/NOT
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Fig. 5-18(a) is to be converted to an AND/OR diagram. The symbol of the
gate in the last level is changed to an invert-OR. Looking for alternate
levels, we find one more gate requiring a change of symbol as shown in
Fig. 5-18(b). Any two circles along the same line are removed. Circles that
go to external inputs are also removed, provided the corresponding input
variable is complemented. The required AND/OR logic diagram is drawn in
Fig. 5-18(c).

56 NOR LOGIC

The NOR function is the dual of the NAND function. For this reason, all
procedures and rules for NOR logic form a dual of the corresponding
procedures and rules developed for NAND logic. This section enumerates
various methods for NOR logic implementation and analysis by following
the same list of topics used for NAND logic. However, less detailed explana-
tion is included so as to avoid excessive repetition of the material in
Sec. 5-5.

Universal Gate

The NOR gate is universal because any Boolean function can be
implemented with it, including a flip-flop circuit as shown in Sec. 6-2. The
conversion of AND, OR, and NOT to NOR is shown in Fig. 5-19. The
NOT operation is obtained from a one-input NOR gate, yet another symbol
for an inverter circuit. The OR operation requires two NOR gates. The first
produces the inverted OR and the second acts as an inverter to obtain the
normal output. The AND operation is achieved through a NOR gate with
additional inverters in each input.

A NOT (inverter)

AI
\’:__EDO‘(A’ +BY=AB  AND
B/

Figure 5-19 Implementation of NOT, OR and AND by NOR gates

— >
‘;:Dc A4+ By Dc, A+B OR

1 >

1 e
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Boolean Function Implementation—Block
Diagram Method

The block diagram procedure for implementing Boolean functions with
NOR gates is similar to the procedure outlined in the previous section for
NAND gates.

1. Draw the AND/OR/NOT logic diagram from the given algebraic
expression. Assume that both the normal and complement inputs are
available.

2. Draw a second logic diagram with equivalent NOR logic as given in
Fig. 5-19 substituted for each AND, OR, and NOT gate.

3. Remove pairs of cascaded inverters from the diagram. Remove
inverters connected to single external inputs and complement the
corresponding input variable.

The procedure is illustrated in Fig. 5-20 for the function:
F=A4 (B + CD)+ BC'

The AND/OR implementation of the function is drawn in the logic diagram
of Fig. 5-20(a). For each OR gate we substitute a NOR gate followed by
an inverter. For each AND gate we substitute input inverters followed by a
NOR gate. The pair of cascaded inverters from the OR box to the AND
box is removed. The four inverters connected to external inputs are
removed and the input variables complemented. The result is the NOR logic
diagram shown in Fig. 5-20(c). The number of NOR gates in this example
equals the number of AND/OR gates plus an additional inverter in the
output (NOR gate number 6). In general, the number of NOR gates
required to implement a Boolean function equals the number of AND/OR
gates, except for an occasional inverter. This is true provided both normal
and complement inputs are available because the conversion forces certain
input variables to be complemented.

Two-Level Implementation—Praduct of Sums

The rule for obtaining the NOR logic diagram directly from a Boolean
function expressed in product of sums is the same as that given for NAND
logic for sum of products. This follows directly from the principle of
duality:

1. Draw a NOR gate for each OR term of the function that has at least
two literals. The inputs to each NOR gate are the literals of the term.
This constitutes a group of first-level gates.

2. Draw a single NOR gate in the second level with inputs coming from
outputs of first-level gates.
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Figure 5-20 Implementation of F = A(B + CD) + BC' with NOR
gates

3. Any literal that appears as a term by itself is complemented and
applied as input to the second-level gate.
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Three-Level Implementation—Sum of Products

Again following the principle of duality, we find that a sum of products
implementation with NOR gates follows a similar procedure as the product
of sums implementation for NAND gates.

1. Draw a NOR gate for each AND term of the function that has at
least two literals. The inputs to each NOR gate are the complements
of the literals in the term. This constitutes a group of first-level gates.

2. Draw a single NOR gate in the second level with inputs coming from
outputs of first-level gates.

3. Any literal that appears as a term by itself is applied as input to the
second-level NOR gate.

4. Draw a third-level NOR gate with a single input connected to the
output of the second-level NOR gate.

The following example demonstrates the derivation of the NOR logic

diagrams from the same Boolean function used in Ex. 5-1.
EXAMPLE 5-2. Implement the function of Ex. 5-1 with NOR gates.

The simplified Boolean expressions for this function are derived in the maps

of Fig. 5-13. The simplified product of sums expression is:
F=B+C0)A+C +D)y(Ad" +B+C +D)

Following the rules for a two-level implementation, we obtain the logic

diagram of Fig. 5-21(a). The simplified sum of products expression is:
F=B'C'+ A'CD + BCD + ACD'

Following the rules for a three-level implementation, we obtain the logic

diagram of Fig. 5-21(b). It is interesting to compare the logic diagrams of

Fig. 5-21 with those obtained for NAND logic in Fig. 5-14. Provided both

NAND and NOR gates are available, the four logic diagrams constitute four

different implementations of the same Boolean function.

Analysis Procedure

The analysis of NOR logic diagrams follows the same procedures
presented in Sec. 4-7 for the analysis of combinational circuits. To derive
the Boolean function from a logic diagram, we mark the outputs of various
gates with arbitrary symbols. By repetitive substitutions we obtain the
output variable as a function of the input variables. To obtain the truth
table from a logic diagram without first deriving the Boolean function, we
form a table listing the n input variables with 2" rows of 1’s and 0’s. The
truth table of various NOR gate outputs is derived in succession until the
output truth table is obtained. The output function of a typical NOR gate
is of the form T = (4 + B' + C), so the truth table for T is marked with
a 0 for those combinations where 4 = 1 or B = 1 or C = 1. The rest of
the rows are filled with 1’s.

Block Diagram Transformation

To convert a NOR logic diagram to its equivalent AND/OR/NOT logic
diagram, we utilize the two symbols for NOR gates as shown in Fig. 5-22.
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(a) Two-level from product of sums (b) Three-level from sum of products
F=B+C)(A+C +D)(A'+B+C + D) F = B’C’ + A’CD + BCD +ACD’

Figure 5-21 NOR implementation of the Boolean function of Example 5-2
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(a) OR-invert (b) invert-AND

Figure 5-22 Two symbols for NOR gate

The OR-invert is the normal symbol for a NOR gate and the invert-AND is
a convenient alternative that utilizes De Morgan’s theorem and the con-
vention that small circles in the inputs denote complementation.

The conversion of a NOR logic diagram to an AND/OR/NOT diagram is
achieved through a change in symbols from OR-invert to invert-AND start-
ing from the last level and in alternate levels. Pairs of small circles along
the same line are removed. One input AND or OR gate is removed, but if
it has a small circle in the input or output, it is converted to an inverter.

This procedure is demonstrated in Fig. 523, where the NOR logic
diagram in (a) is converted to an AND/OR/NOT diagram. The symbol of
the gate in the last level (5) is changed to an invert-AND. Looking for
alternate levels, we find one gate in level 3 and two in level 1. These three
gates undergo a symbol change as shown in (b). Any two circles along the
same line are removed. Circles that go to external inputs are also removed
provided the corresponding input variable is complemented. The gate in
level 5 becomes a one-input AND gate and is removed. The required AND/
OR logic diagram is drawn in Fig. 5-23(c).
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Figure 5-23 Conversion of NOR logic diagram to AND/OR/NOT

57 OTHER TWO-LEVEL IMPLEMENTATIONS

A general form of a two-level gate implementation is shown in Fig. 5-24.
Each box labeled ¢; represents a first-level gate. The box labeled c,
represents the second-level gate. For example, a Boolean function expressed
in sum of products can be implemented in a two-level form with each ¢,
box representing an AND gate and the ¢, box representing an OR gate. For
convenience we use the notation c¢;/c, to designate a two-level implementa-
tion and refer to it as an AND/OR two-level form.

In previous sections we have considered four types of gates: AND, OR,
NAND, and NOR. If we assign one type of gate for c¢; and one type for
¢z, we shall obtain 16 possible combinations of two-level forms. Eight of
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Figure 5-24 General two-level gate implementation

these combinations are said to be degenerate forms; they degenerate to a single
operation (see Prob. 5-27). The other eight nondegenerate forms produce an
implementation in sum of products or product of sums provided both normal
and complement inputs are available. The eight nondegenerate forms are:

1. AND/OR 2. OR/AND

3. NAND/NAND 4. NOR/NOR
5. NOR/OR 6. NAND/AND
7. OR/NAND 8. AND/NOR

The four forms listed in the left column implement a function expressed in
sum of products, while the four forms on the right implement a function
expressed in product of sums. Note that any two forms listed in the same
row are the dual of each other.

The AND/OR and OR/AND forms are basic two-level forms and have
been discussed extensively in previous chapters. The NAND/NAND form was
introduced and discussed in Sec. 5-5 and the NOR/NOR form in Sec. 5-6.
The remaining two-level forms are investigated in this section.

One must realize that it is sometimes convenient, from various hardware
considerations, to construct a two-level form as a nonseparable unit. For
example, an AND/NOR two-level form may be available in an IC package
with only the inputs to firstlevel gates and the output of the second-level
gate connected to external pins. Another hardware facility that produces
equivalent two-level forms is the wired-OR or wired-AND property of
certain logic gates. Wired is a word used to explain the ability to produce a
second-level operation (usually OR or AND but not both) by connecting
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(shorting) together the outputs of all firstlevel gates. For example, a
NOR/OR form may be available from NOR gates that possess the property
of producing a wired-OR function when two or more outputs are shorted.

Figure 5-25 may be conveniently used to determine the logic function of
the various two-level forms. Each logic diagram has two first-level gates with
inputs designated by 4 and B for one gate and C and D for the other gate.
A fifth input designated by E goes directly to the second-level gate. The
logic function performed by each two-level form can be determined algebra-
ically and from it one can deduce the rule for implementing any Boolean
function with the given two-level form.

A
B
- Fs=A'B'+CD'+E
"
D
E
(a) NOR/OR

) Fg=(4'+B') (C'+ D)E

Z_D—L_x
Do.__

(b) NAND/AND

o——F. — A'B'+C'D+E

(c) OR/NAND

Fg =(A"+B)(C’'+ D)E’
C
D

1

(d) AND/NOR

Figure 5-25 Two-level implementations of four non-degenerate forms
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NOR/OR Form

The logic diagram for this two-level form is shown in Fig. 5-25(a). The
output function for the circuit is:

Fs=A+B)+(C+D)Y+E=A4AB+CD +E

which shows that a Boolean function expressed in sum of products can be
implemented with a NOR/OR form if the input literals are complemented
except for a single literal forming an OR-term.

NAND/AND Form

The logic diagram for this two-level form is shown in Fig. 5-25(b). The
output function for the circuit is:

Fe¢ =(AB) (CD)) E=(A'"+B)(C'+D"E
which shows that a Boolean function expressed in product of sums can be

implemented with a NAND/AND form if the input literals are com-
plemented (except for a single literal forming an AND-term).

OR/NAND Form

The logic diagram for this form shown in Fig. 5-25(c) produces the
following output function:

F,=[A+B)(C+D)E]'=AB +CD +FE

This result shows that a Boolean function expressed in sum of products can
be implemented with an OR/NAND form provided all input literals are
complemented.

Another way of looking at the OR/NAND form is to consider it as an
OR/AND/INVERT function with the inversion done by the small circle of
the second-level NAND gate. An OR/AND implementation requires a
product of sums form. The inversion complements the function. Therefore,
if we derive the complement of the function in product of sums, we can
implement it with the OR/AND function and when it passes through the
always present output inversion, it will generate the normal output function.
This procedure produces the same implementation as the one outlined
above.

AND/NOR Form

The logic diagram for this form produces the following output function:

Fs=(AB+CD+E)=(4"+B)({C' +D)E
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The result shows that a Boolean function expressed in product of sums can
be implemented with an AND/NOR form provided all input literals are
complemented.

Again, an AND/NOR form may be considered as an AND/OR/INVERT
form, with the inversion done by the small circle of the second-level NOR
gate. Therefore, if the complement of the function is expressed in sum of
products, it can be implemented with the AND/OR function. When the
complement passes through the output inversion, it generates the normal
function. The implementation achieved by this method is the same as that
outlined above.

The implementation of a Boolean function with any one of the eight
nondegenerate two-level forms is summarized in Table 5-4. For completeness,
we include the first four forms, which have been discussed in previous
chapters.

EXAMPLE 5-3. Implement the Boolean function represented in the map
of Fig. 5-26 with the four two-level forms NOR/OR, NAND/AND, OR/
NAND, and AND/NOR.

The simplified Boolean function in sum of products is obtained by
combining the 1’s in the map:

F=AB + A'C + AC'D' (5-1

The complement of the function in sum of products is obtained by
combining the 0’s in the map:

F'=A'C' + AB'C + AB'D (5-2)

Table 5-4 Method of Implementation of a Boolean Function
With Non-degenerate Two-level Forms

Standard form of function Inputs

Two-level form to be used Literals to be complemented

AND/OR sum of products none

OR/AND product of sums none

NAND/NAND sum of products single literal forming a term

NOR/NOR product of sums single literal forming a term

NOR/OR sum of products all, except for a single
literal forming a term

NAND/AND product of sums all, except for a single
literal forming a term

OR/NAND sum of products all

AND/NOR product of sums all
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Figure 5-26 Map for Example 5-3

The product of sums expression is obtained from the complement of F " as
expressed in Eq. 5-2:

F=(A+C) (A +B+C)A +B+D) (5-3)

The complement of the function in product of sums is obtained from the
complement. of F as expressed in Eq. 5-1:

F'=(A"+BYA+C)YA +C+D) (5-4)

The NOR/OR implementation is shown in Fig.5-27(a). The expression
employed is the sum of products from Eq. 5-1, with all input literals
complemented. (There is no term with a single literal in this expression.)

The NAND/AND implementation is shown in Fig. 5-27(b). The expression
employed is the product of sums from Eq. 5-3, with all input literals
complemented (again, there is no single-literal term in this expression).

The OR/NAND implementation is shown in Fig. 5-27(c). The expression
used is the sum of products from Egq. 5-1, with all input literals com-
plemented. The same result is obtained if we use the complement function
F' expressed in product of sums from Eq. 5-4 to generate an OR/AND
function. The small circle in the output complements F' to produce the
normal function F.

The AND/NOR implementation is shown in Fig. 5-27(d). The expression
employed is the product of sums from Eq. 5-3, with all input literals
complemented. Again, the same result is obtained when F' is used from
Eq. 5-2 to generate an AND/OR function. The small circle in the output
complements F' to produce the normal function F.

It was shown in Secs. 5-5 and 5-6 that a Boolean function can be
implemented with three levels of NAND or NOR gates. Similarly, other
two-level forms can be extended to three levels, with the third level being
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Figure 5-27 Two-level implementations for Example 5-3

either an inverter, a one-input NOR (when NOR gates are used), or a
one-input NAND (when NAND gates are used). The third level acts as an
inverter to complement what has been generated by the first two levels.
The various methods for three-level implementation of a Boolean function
can be listed in a table similar to Table 5-4 with the following changes:
(a) each two-level form is changed to a three-level form (for example
AND/OR is changed to AND/OR/NOT), (b) the standard form listed in
Table 5-4 is interchanged—sum of products is changed to product of sums
and vice versa, (c) the literals to be complemented are those listed not to
be complemented in Table 5-4 (see Prob. 5-30). These rules are a direct
consequence of the fact that a complemented function produces a dual function
with all literals complemented.

5-8 EXCLUSIVE-OR AND EQUIVALENCE FUNCTIONS

Exclusive-or and equivalence, denoted by @ and © respectively, are binary
operations that perform the following Boolean functions:

x®y=xy +x'y

x@y =xy +txy'
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The two operations are the complement of each other. Each is commutative
and associative. Because of these two properties, a function of three or
more variables can be expressed without parentheses as follows:

A®BBOC=AOBOO=AOBOC

This would imply the possibility of using exclusive-or (or equivalence) gates
with three or more inputs. However, multiple-input exclusive-or gates are
very uneconomical from a hardware standpoint. In fact, even a two-input
function is usually constructed with other types of gates. For example,
Fig. 5-28(a) shows the implementation of a two-input exclusive-or function
with AND, OR, and NOT gates. Figure 5-28(b) shows it with NAND gates.
It is sometimes convenient to employ the gate symbols introduced in
Fig. 5-2 instead of drawing the internal constructions in detail.

Only a limited number of Boolean functions can be expressed exclusively
in terms of exclusive-or or equivalence operations. Nevertheless, these func-
tions emerge quite often during the design of digital systems. The two
functions are particularly useful in arithmetic operations and error detection
and correction. In fact, we have already encountered these functions in two

o
So—

(a) with AND/OR/NOT gates

" Ba
=D [ o—— o

(b) with NAND gates

Figure 5-28 Exclusive-OR implementations
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combinational circuits in Ch. 4: the S output of the half-adder in Fig. 4-2
is an exclusive-or function and the part of the comparator circuit of
Fig. 4-10 used to generate the equality of each pair of binary digits
comprises three equivalence functions.

An n-variable exclusive-or expression is equal to the Boolean function
with 27/2 minterms whose equivalent binary numbers have an odd number
of 1’s. This is demonstrated in the map of Fig. 5-29(a) for the four-variable
case. There are 16 minterms for four variables. Half the minterms have a
numerical value with an odd number of 1’s; the other half have a numerical
value with an even number of 1’. The numerical value of a minterm is
determined from the row and column numbers of the square that represents
the minterm. The map of Fig. 5-29(a) has 1’s in the squares whose min-
term numbers have an odd number of 1’s. The function can be expressed in
terms of the exclusive-or operations on the four variables. This is justified
by the following algebraic manipulation:

A®BO®CO®D = (4B + A'B)® (CD + C'D)
= (AB' + A'B) (CD + C'D")
+ (4B + A'B") (CD' + C'D)
=2 (1,2, 4,7 8,11, 13, 14)

An n-variable equivalence expression is equal to the Boolean function
with 27/2 minterms, whose equivalent binary numbers have an even number
of 0’s. This fact is demonstrated in the map of Fig. 5-29(b) for the
four-variable case. The squares with 1’s represent the eight minterms with
even number of 0’ and the function can be expressed in terms of the
equivalence operations on the four variables.

cp ¢ cp ¢
4p—0__ Ol 1110 4p—0 01 11 10
00 1 1 00 1 1
o1 1 1 01 1 1

B B
11 1 1 1 1 1
A A
10] 1 1 10 1 1
T —
F=A®oB®Ce®D F = A ®BOCOD
(a) (b)

Figure 5-29 Map for a 4-variable (a) exclusive-OR function, (b) equiv-
alence function
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(a) F=A®B®C = AOBOC (b) F=A®BOC = ACB®C
Figure 5-30 Map for 3-variable functions

When the number of variables in a function is odd, the minterns with an
even number of O’ are the same as the minterms with an odd number of
1’s. This fact is demonstrated in the three-variable map of Fig. 5-30(a).
Therefore, an exclusive-or expression is equal to an equivalence expression
when both have the same odd number of variables. However, they form the
complement of each other when the number of variables is even, as is
demonstrated in the two maps of Fig. 5-29(a) and (b).

When the minterms of a function with an odd number of variables have
an even number of 1’s (or equivalently, an odd number of 0%), the
function can be expressed as the complement of either an exclusive-or or an
equivalence expression. For example, the three-variable function shown in
the map of Fig. 5-30(b) can be expressed as follows:

UOBO®C) =A®BOC
of (A@BO®C)=A®B®C

The S output of a full-adder and the D output of a full-subtractor (Sec. 4-3)
can be implemented with exclusive-or functions because each function consists
of four minterms with numerical values having an odd number of 1’s. The
exclusive-or function is extensively used in the implementation of digital
arithmetic operations because the latter are usually implemented through
procedures that require a repetitive addition or subtraction operation.

Exclusive-or and equivalence functions are very useful in systems requiring
error detection and correction codes. As discussed in Sec. 1-6, a parity bit is a
scheme for detecting errors during transmission of binary information. A parity
bit is an extra bit included with a binary message to make the number of 1’s
either odd or even. The message, including the parity bit, is transmitted and then
checked in the receiving end for erros. An error is detected if the checked parity
does not correspond to the one transmitted. The circuit that generates the parity
bit in the transmitter is called a parity generator; the circuit that checks the
parity in the receiver is called a parity checker.

As an example, consider a three-bit message to be transmitted with an odd
parity bit. Table 5-5 shows the truth table for the parity generator. The three
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Table 5-5 Odd Parity Generation

Parity-bit
3-bit message | generated

=

y z

Ll == = =Y
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(a) 3-bit odd parity generator (b) 4-bit odd parity checker
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Figure 5-31 Logic diagrams for parity generation and checking

bits x, y, and z constitute the message and are the inputs to the circuit. The
parity bit P is the output. For odd parity, the bit P is generated so as to make
the total number of 1’s odd (includingP). From the truth table we see that P =1
when the number of 1’s in X, y, and z is even. This corresponds to the map of
Fig. 5-30(b), so that the function for P can be expressed as follows:

P=x®y ©z
The logic diagram for the parity generator is shown in Fig. 5-31(a). It consists of
one two-input exclusive-or gate and one two-input equivalence gate. The two
gates can be interchanged and still produce the same function since P is also
equal to

P=x@y®:z

The three-bit message and the parity bit are transmitted to their destination,
where they are applied to a parity checker circuit. An error occurs during
transmission if the parity of the four bits received is even, since the binary
information transmitted was originally odd. The output C of the parity checker
should be a 1 when an error occurs; i.e., when the number of 1’s in the four
inputs is even. Table 5-6 is the truth table for the odd parity checker circuit.
From it we see that the function for C consists of the eight minterms with
numerical values having an even number of 0’s. This corresponds to the map of
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Table 5-6 Odd Parity Check

4-bits received Parity error check
x y z P C
0o 0 0 O 1
0o 0 0 1 0
o 0 1 O 0
0 0 1 1 1
0 1 0 0 0
0 1 o0 1 1
o 1 1 0 1
0o 1 1 1 0
1 0 0 O 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 O 1
1 1 0 -1 0
1 1 1 0 0
1 1 1 1 1

Fig. 5-29(b) so that the function can be expressed with equivalence operators as
follows:

C=x@y®@zEP

The logic diagram for the parity checker is shown in Fig. 5-31(b) and
consists of three two-input equivalence gates.

It is worth noting that the parity generator can be implemented with the
circuit of Fig. 5-31(b) if the input P is permanently held at logic-O and the
output is marked P, the advantage being that the same circuit can be used
for both parity generation and checking.
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It is obvious from the above example that parity generation and checking
circuits always have an output function that includes half of the minterms whose
numerical values have either an even or odd number of 1’s. As a consequence,
they can be implemented with equivalence and/or exclusive-or gates.

PROBLEMS

5-1. How many of the MSI functions introduced in Ch. 4 can be accom-
modated in one 14-pin IC package?

5-2. Discuss some of the advantages and difficulties that one may encounter
when LSI devices are used in digital systems.
5-3. By substituting the AND/OR/NOT equivalent definition of the binary
operations as defined in Sec. 2-6, show that:
(a) The inhibition and implication operators are neither commutative
nor associative.
(b) The exclusive-or and equivalence operators are commutative and
associative.
(¢) The NAND operator is not associative.

(d) The NOR and NAND operators are not distributive.

5-4. A majority gate is a digital circuit whose output is logic-1 if the
majority of the inputs are logic-1 and logic-0 otherwise. By means of
truth tables, find the Boolean function implemented by the following
majority (MAJ) gate circuit.

x| — l—*

y—= MAJ x—-»] MAJ MAJ |—F

7 — y — Z ——i

5-5. Repeat Prob. 5-4 for the following circuit. What is the function of
the circuit?

MA] |—F,

5-6. The gate shown below performs the inhibition operation F = x'y.
Obtain the AND, OR, and NOT functions using inhibition gates only.
Remember that 0 and 1 are valid values for inputs.
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5-8.

5-12.

y/x p————F=xYy

(a) Show that the NOR and NAND operations are the dual of each
other.

(b) Show that one physical circuit can function as a positive logic
NAND gate or as a negative logic NOR gate.

(c) Repeat part (b) for positive logic NOR and negative logic NAND.
The following example demonstrates the duality of positive and negative
negative logic. (a) Draw the logic diagram for the function F = AB
+ C. (b) Obtain the truth table. (c¢) You are told that the gates operate
with positive logic with logic-1 and logic-0 being +5 volt and -5
volt, respectively. Obtain a truth table showing voltage values instead
of 1’s and 0%. (d) Use the same physical gates as in (c) but change
to a negative logic system; that is, let signal -5 volt represent logic-1
and +5 volt represent logic-0. Obtain the truth table in terms of
1’s and 0’s. (¢) Show that the truth table obtained in (d) gives a
Boolean function F = (4 + B)C which is the dual of the one in (a).
(f) Now repeat steps (a) to (e) after changing step (c) to read: “You
are told that the gates operate with negative logic with -5 volt and
+5 volt representing 1 and O respectively.” Show that the function
obtained in step (e) is AB + C.

Count the number of logic levels in the circuits of Fig. P4-19 and
P4-21. Obtain the equivalent two-level circuit for each.

. What is the fan-in and fan-out of the AND gates and inverters specified

in Prob. 4-277

. Obtain a two-level and a multilevel implementation AND and OR gates

of the function
F(4, B, C, D)=2(2,3,5,17,10, 12, 13, 14)

with the restriction that inputs 4 and A' can provide only one load;
ie., each can be connected to one gate input only. Assume that both
the normal and complement input variables are available.

Using the block diagram method, convert the following logic diagrams
from AND/OR implementation to NAND implementation.

(a) BCD to excess-3 converter, Fig. 4-8.
(b) Three-bit comparator, Fig. 4-10.

(¢) Full-adder, Fig. 4-11.

(d) Binary to octal decoder, Fig. 4-12..
(e) Octal to binary encoder, Fig. 4-13.
(f) Eight-input multiplexer, Fig. 4-15.
(g) Four-output demultiplexer, Fig. 4-17.
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5-13.
5-14.

5-15.

5-16.
5-17.

5-19.

5-20.

5-21.

5-22.

GATE IMPLEMENTATION Chap. 5

Repeat Prob. 5-12 for NOR implementation.

Obtain the NAND logic diagram of a full-adder from the Boolean
functions:

C=xy+xz+yz
S=C'(x+y+2)+xyz

Simplify each of the following functions and implement them with NAND
gates. Give two alternatives.

(a) Fy = AC' + ACE + ACE' + A'CD' + A'D'E’

b)) F,=@B +D)YUU +C +DYUA+B +C +D)
A +B+C +D)

Repeat Prob. 5-15 for NOR implementations.

Implement the following functions with NAND gates. Assume that
both the normal and complement inputs are available.

(a) BD + BCD + AB'C'D' + A'B'CD’ with no more than six gates each
having three inputs.

(b) (4B + A'B") (CD' + C'D) with two-input gates.

. Implement the following functions using the don’t-care conditions.

Assume that both the normal and complement inputs are available.

(a) F=A'B'C' + AB'D + A'B'CD’ with no more than two NOR
d = ABC + AB'D' gates.
b)) F=A+D)yA +B) A +C) with no more than three
NAND gates.
(c) F=B'D+B'C+ ABCD with NAND gates.

d = A'BD + AB'C'D’

Implement the following function with either NAND or NOR gates.
Use only four gates. Only the normal inputs are available.

F=wxz+wyz+x'yz' +wxy'z

d = wyz
Implement the following functions with NOR gates. Assume that both
the normal and complement inputs are available.
(a) AB' + C'D' + A'CD' + DC' (AB + A'B') + DB (AC + A'C)
(b) AB'CD' + A'BCD' + AB'C'D + A'BC'D
Design the following combinational circuit using minimum number of
NOR gates. The circuit has four inputs which represent a decimal

digit in BCD and a single output, which is equal to 1 whenever the
value of the input digit is less than 3 or more than 7.

Determine the Boolean function for the output F of the circuit in
Fig. P5-22. Obtain an equivalent circuit with less NOR gates.



Sec. 5-8 PROBLEMS 163

T

A
B’

BI
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5-24. Obtain the truth table for the circuits of Fig. P5-23.
5-25. Obtain the equivalent AND/OR/NOT logic diagram of Fig. P5-23(a).
5-26. Obtain the equivalent AND/OR/NOT logic diagram of Fig. P5-23(b).

5-27. List the eight degenerate two-level forms and show that they reduce
to a single operation. Explain how the degenerate two-level forms can
be used to extend the fan-in of gates.

5-28. Implement the functions of Prob. 5-15 with the following two-level
forms: NOR/OR, NAND/AND, OR/NAND, and AND/NOR.
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5-29. Implement the functions of Prob. 5-15 with the three-level forms:

NOR/OR/NOR, NAND/AND/NAND, OR/NAND/NAND, and
AND/NOR/NOR.

5-30. List in a table (similar to Table 5-4) the method of implementation of

Boolean functions with nondegenerate three-level forms. Implement the
functions of Ex. 5-3 with all possible three-level forms.

5-31. Obtain the logic diagram of a two-input equivalence function using (a)

AND, OR, NOT gates; (b) NOR gates; (c) NAND gates.

5-32. Show that the circuit of Fig. 5-28(b) is an exclusive-or.
5-33. Show that A®@ B®C® D = X(0, 3, 5, 6,9, 10, 12, 15).

5-34. Design a combinational circuit that converts a four-bit reflected code

number (Table 1-4) to a four-bit binary number. Implement the
circuit with exclusive-or gates.

5-35. Design a combinational circuit to check for even parity of four bits.

A logic-1 output is required when the four bits do not constitute an
even parity.

5-36. Implement the four Boolean functions listed using three half-adder

circuits (Fig. 4-2).

(@) D=A@Be®C

(b) E = A'BC + AB'C

(c) F=ABC + (4" + B)C
(d) ABC

5-37. Implement the Boolean function:

3.

F = AB'CD' + A'BCD' + AB'C'D + A'BC'D

with exclusive-or and AND gates.
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SEQUENTIAL
6 LOGIC

6-1 INTRODUCTION

The digital circuits considered thus far have been combinational; that is,
the outputs at any instant of time are entirely dependent upon the
inputs present at that time. Although every digital system is likely to
have combinational circuits, most systems encountered in practice also
include memory elements, which require that the system be described in
terms of sequential logic.

A block diagram of a sequential circuit is shown in Fig. 6-1. It
consists of combinational logic gates which accept binary signals from
external inputs and from outputs of memory elements and generate
signals to external outputs and to inputs of memory elements. A memory
element is a device capable of storing one bit of information. The binary
information stored in memory elements can be changed by the outputs of
the combinational circuit. The outputs of memory elements, in turn, go
to the inputs of gates in the combinational circuit.

The combinational circuit, by itself, performs a specific information
processing operation, part of which is used to determine the binary value
to be stored in memory elements. The outputs of memory elements are
applied to the combinational circuit and determine, in part, the circuit’s
outputs. This process clearly demonstrates that the external outputs of a
sequential circuit are a function not only of external inputs but also of
the present state of memory elements. (The state of a memory element
or binary cell was defined in Sec. 1-7.) The next state of memory

165
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elements is a function of external inputs and the present state. Thus, a
sequential circuit is specified by a time sequence of inputs, outputs, and
internal states.

Outputs from
combinational Outputs from
logic gates memory e¢lements

| !

Combinational Memory
circuit elements

External inputs

Figure 6-1 Block diagram of a sequential circuit

There are two main types of sequential circuits. Their classification
depends on the timing of their signals. A synchronous sequential circuit is a
system whose behavior can be defined from the knowledge of its signals at
discrete instants of time. The behavior of an asynchronous sequential circuit
depends upon the order in which its input signals change and can be
affected at any instant of time. The memory elements commonly used in
asynchronous sequential circuits are time-delay devices. The memory capa-
bility of a time-delay device is due to the fact that it takes a finite time
for the signal to propagate through the device. In practice, the internal
propagation delay of logic gates is of sufficient duration to produce the
needed delay so that physical time-delay units may be unnecessary. In gate
type asynchronous systems, the memory elements of Fig. 6-1 consist of
logic gates whose propagation delays constitute the required memory. Thus,
an asynchronous sequential circuit may be regarded as a combinational
circuit with feedback. Because of the feedback among logic gates, an
asynchronous sequential circuit may, at times, become unstable. The insta-
bility problem imposes many difficulties to the designer. Hence they are not
as commonly used as synchronous systems.

A synchronous sequential logic system, by definition, must employ
signals that affect the memory elements only at discrete instants of time.
One way of achieving this goal is to use pulses of limited duration through-
out the system so that one pulse amplitude represents logic-1 and another
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pulse amplitude (or the absence of a pulse) represents logic-0. The difficulty
with a system of pulses is that any two pulses arriving from separate
independent sources to the inputs of the same gate will exhibit unpre-
dictable delays, separate the pulses slightly, and result in unreliable
operation.

Practical synchronous sequential logic systems use fixed amplitudes such
as voltage levels for the binary signals. Synchronization is achieved by a
timing device called a master clock generator which generates a periodic
train of clock pulses. The clock pulses are distributed throughout the
system in such a way that memory elements are affected only with the
arrival of the synchronization pulse. In practice, the clock pulses are applied
into AND gates together with the signals that specify the required change in
memory elements. The AND gate outputs can transmit signals only at
instants which coincide with the arrival of clock pulses. Synchronous
sequential circuits that use clock pulses in the inputs of memory elements
are called clocked sequential circuits. Clocked sequential circuits are the
type encountered most frequently. They do not manifest instability prob-
lems and their timing is easily broken down into independent discrete steps,
each of which is considered separately. The sequential circuits discussed in
this book are exclusively of the clocked type.

The memory elements used in clocked sequential circuits are called
flip-flops. These circuits are binary cells capable of storing one bit of
information. A flip-flop circuit has two outputs, one for the normal value
and one for the complement value of the bit stored in it. Binary informa-
tion can enter a flip-flop in a variety of ways, a fact which gives rise to
different types of flip-flops. In the next section we shall examine the
various types of flip-flops and define their logical properties.

6-2 FLIP-FLOPS

A flip-flop circuit can maintain a binary state indefinitely (as long as power
is delivered to the circuit) until directed by an input signal to switch states.
The major differences among various types of flip-flops are in the number
of inputs they possess and in the manner in which the inputs affect the
binary state. The most common types of flip-flops are discussed below.

Basic Flip-Flop Circuit

It was mentioned in Secs. 5-5 and 5-6 that a flip-flop circuit can be
constructed from two NAND gates or two NOR gates. These constructions
are shown in the logic diagrams of Figs. 6-2 and 6-3. Each circuit forms a
basic flip-flop upon which other more complicated types can be built. The
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cross-coupled connection from the output of one gate to the input of the
other gate constitutes a feedback path. For that reason, the circuits are
classified as asynchronous sequential circuits. Each flip-flop has two outputs,
Q and Q', and two inputs, set and reset. This type of flip-flop is sometimes
called a direct-coupled RS flip-flop; the R and the S being the first letters
of the two input names.

To analyze the operation of the circuit of Fig. 6-2, we must remember
that the output of a NOR gate is O if any input is 1, and that the output
is 1 only when all inputs are 0. As a starting point, assume that the set
input is 1 and the reset input is 0. Since gate number 2 has an input of 1,
its output Q' must be 0, which puts both inputs of gate number 1 at 0, so that
output Q is 1. When the set input is returned to O, the outputs remain the
same. This is because output Q remains a 1, leaving one input of gate
number 2 at 1. That causes output Q' to stay at 0, which leaves both
inputs of gate number 1 at 0, so that output Q is a 1. In the same manner
it is possible to show that a 1 in the reset input changes output Q to O
and Q' to 1. When the reset input returns to 0, the outputs do not change.

1
0— —— R (reset) 0 S R|Q &
1 01 O
0 0|1 O (afterS=1,R=0)
1 0 10 1
0 0 0|l0 1 (afterS=0,R=1)
o—  b— s(sen 1 1]o o
(a) Logic diagram (b) Truth table

Figure 6-2 Basic flip-flop circuit with NOR gates

When a 1 is applied to both the set and reset inputs, both @ and Q'
outputs go to 0. Strictly speaking, a flip-flop whose two outputs assume the
same binary value while both the set and reset inputs have equal values is
called a latch. In a true flip-flop circuit this condition is normally avoided.

A flip-flop has two useful states. When Q = 1 and Q' = 0 it is in the
set-state (or 1-state). When Q = 0 and Q' = 1, it is in the clear-state (or
O-state). The outputs Q and Q' are complements of each other and are
referred to as the normal and complement output, respectively. The binary
state of the flip-flop is taken to be the value of the normal output.

Under normal operation, both inputs remain at O unless the state of the
flip-flop has to be changed. The application of a momentary 1 to the set
input causes the flip-flop to go to the set-state. The set input must go back
to 0 before a 1 is applied to the reset input. A momentary 1 applied to
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the reset input causes the flip-flop to go the clear-state. When both inputs
are initially 0, a 1 applied to the set input while the flip-flop is in the set
state or a 1 applied to the reset input while the flipflop is in the
clearstate leaves the outputs unchanged. When a 1 is applied to both the
set and reset inputs, both outputs go to 0. This state is undefined and is
usually avoided. If both inputs now go to O, the state of the flip-flop is
indeterminate and depends on which input remains a 1 longer before the
transition to O.

1— —
[ R
0 S(set) — 0
A 0ofo
o1 110 1 (after S = 1,R = 0)
B WL 1|10 ,
' 1 1|1 0 (afterS=0,R=1)
0 R(reset) w0 01 1
(a) Logic diagram (b) Truth table

Figure 6-3 Basic flipflop circuit with NAND gates

The NAND basic flip-flop circuit of Fig. 6-3 operates with both inputs
normally at 1 unless the state of the flip-flop has to be changed. The
application of a momentary O to the set input causes output Q to go to 1
and Q' to go to 0, thus putting the flip-flop into the set-state. After the set
input returns to 1, a momentary O to the reset input causes a transition to
the clear-state. When both inputs go to 0, both outputs go to 1, a
condition avoided in normal flip-flop operation.

Clocked RS Flip-Flop

The basic flip-flop as it stands is an asynchronous sequential circuit. By
adding gates to the inputs of the basic circuit, the flip-flop can be made to
respond to input levels during the occurrence of a clock pulse. The clocked
RS flip-flop shown in Fig. 6-4(a) consists of a basic NOR flip-flop and two
AND gates. The outputs of the two AND gates remain at O as long as the
clock pulse (abbreviated CP) is 0, regardless of the S and R input values.
When the clock pulse goes to 1, information from the S and R inputs is
allowed to reach the basic flip-flop. The set-state is reached with S=1,
R=0, and CP = 1. To change into the clear-state, the inputs must be S=0,
R =1, and CP = 1. With both § = 1 and R = 1, the occurrence of a clock
pulse causes both ouputs .to momentarily go to 0. When the pulse is
removed, the state of the flip-flop is indeterminate; i.e., either state may
result, depending on whether the set or the reset input of the basic flip-flop
remains a 1 longer before the transition to O at the end of the pulse.
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Two symbols for the RS flip-flop are shown in Fig. 6-4(b). The AND
gates with the clock-pulse input may be drawn external to the symbol, or a

Ro——— [\ 0 § RIQt+ 1)
J Q 00o0]|0
00 1]0
CP-——-«-—”- 01 0]1
(Clock 0 1 1 |indeterminate
pulses) 1 0 0i1
s 0 1010
1 1 0|1
(a) Logic diagram 1 1 1] indeterminate
(¢) Characteristic table
[ A
M
SR —
0 ! o 1 cp @00 01 11 10
R S R S
| | 0 x| 1
Symbol with 01 I’ X ‘—1— [
clock pulses (CP)
included
-
CP R
Qt+1)= S+RrR'Q
Symbol with : -
clock pulses SR=0
excluded
(b) (d) Characteristic equation

Figure 64 Clocked RS flip-flop

symbol with a CP label may be used to mean that flip-flop outputs are not
affected unless a clock pulse occurs in the input marked CP.

The characteristic table for the flip-flop is shown in Fig. 6-4(c). This
table summarizes the operation of the flip-flop in a tabular form. Q is the
binary state of the flip-flop at a given time (referred to as present state),
the S and R columns give the possible values of the inputs, and Q(r + 1) is
the state of the flip-flop after the occurrence of a clock pulse (referred to
as next state).

The characteristic equation of the flip-flop is derived in the map of
Fig. 6-4(d). This equation specifies the value of the next state as a function
of the present state and the inputs. The characteristic equation is an algebraic
expression for the binary information of the characteristic table. The two
indeterminate states are marked by X’s in the map since they may result in
either a 1 or a 0. However, the relation SR = 0 must be included as part
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of the characteristic equation to specify that both S and R cannot equal 1
simultaneously.

D Flip-Flop

The D flip-flop shown in Fig. 6-5 is a modification of the clocked RS
flip-flop. NAND gates 1 and 2 form a basic flip-flop and gates 3 and 4
modify it into a clocked RS flip-flop. The D input goes directly to the S

input and its complement, through gate 5, is applied to the R input. As
long as the clock pulse input is at O, gates 3 and 4 have a 1 in their

D D—
3
‘ ! e

CP

5)0—4)’ i ¢

(a) Logic diagram with NAND gates

2
o Q 0 1
0 | 1 |
0 cp
D o1 1
o+ 1)=D
(b) Symbol (¢) Characteristic table (d) Characteristic equation

Figure 6-5 Clocked D flip-flop

outputs, regardless of the value of the other inputs. This conforms to the
requirement that the two inputs of a basic NAND flip-flop (Fig. 6-3)
remain initially at the 1 level. The D input is sampled during the occur-
rence of a clock pulse. If it is a 1, the output of gate 3 goes to O,
switching the flip-flop to the set-state (unless it was already set). If it is a
0, the output of gate 4 goes to 0, switching the flip-flop to the clear-state.

The D flip-flop receives the designation from its ability to transfer
“data” into a flip-flop. It is basically an RS flip-flop with an inverter in the
R input. The added inverter reduces the number of inputs from two to
one.

The symbol for a clocked D flip-flop is shown in Fig. 6-5(b). The
characteristic table is listed in part (c) and the characteristic equation is
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derived in part (d). The characteristic equation shows that the next state of
the flip-flop is the same as the D input and is independent of the value of
the present state.

JK Flip-Flop

A JK flipflop is a refinement of the RS flip-flop in that the
indeterminate state of the RS type is defined in the JK type. Inputs J and
K behave like inputs S and R to set and clear the flip-flop (note that in a
JK flip-flop, the first letter J is for ser and the second letter K is for
clear). When inputs are applied to both J and K simultaneously, the
flip-flop switches to its complement state; that is, if @ = 1, it switches to
0O = 0, and vice versa.

K )
|/ Q
cpP
J ] ‘, Q'

(a) Logic diagram

JK ".
o Q 07 K|loU+1) Qo _00 01 11 10
0 0 00 0 1 1
0 1| o1 o1 = D
K 1 1 1
01 1]1 e
1 0 0]1
N
1 0 1]0 K
1 1 01 . ,
111100 Qt+ 1) =JQ +KQ
(b) Symbol (c) Characteristic table (d) Characteristic equation

Figure 6-6 Clocked JK flip-flop

A clocked JK flip-flop is shown in Fig. 6-6(a). Output Q is ANDed with
K and CP inputs so that the flip-flop is cleared during a clock pulse only if
Q was previously 1. Similarly, output Q' is ANDed with J and CP inputs so
that the flip-flop is set with a clock pulse only if Q' was previously 1.
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When both J and K are 1, a clock pulse is transmitted through one AND
gate; the one connected to the output equal to 1. Thus, if Q equals 1, the
output of the upper AND gate becomes a 1 and the flip-flop is cleared. If
Q' equals 1, the output of the lower AND gate becomes a 1 and the
flip-flop is set. In either case, the state of the flip-flop is complemented.
Note that if the CP signal remains a 1 after the outputs have been
complemented, the flip-flop will go through a new transition. This timing
problem is eliminated with a master-slave JK flip-flop.

The symbol, characteristic table, and characteristic equation of the JK
flip-flop are shown in Fig. 6-6, parts (b), (c), and (d), respectively.

T Flip-Flop

The T flip-flop is a single-input version of the JK flip-flop. As shown in
Fig. 6-7(a), the T flip-flop is obtained from a JK type if both inputs are

N\
T | J 0
CP
\ Q/
|/

(a) Logic diagram

o’ o) 0 1
| | Q T|o@:+ 1) 0 1
cp 0 0]0
o 1] i olil
1 01
l 1 1]0
QU+ 1H=TQ +TQ
(b) Symbol (¢) Characteristic table (d) Characteristic equation

Figure 6-7 Clocked T flip-flop
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tied together. The designation “7”” comes from the ability of the flip-flop
to “toggle,” or change state. Regardless of the present state of the flip-flop,
it assumes the complement state when the clock pulse occurs while input T
is logic-1.

The symbol, characteristic table, and characteristic equation of the T
flip-flop are shown in Fig. 6-7, parts (b), (¢), and (d), respectively.

Other Considerations

The four types of flip-flops introduced in this section may be available
in an unclocked version. Flip-flops without a clock input are useful for
asynchronous operations. Unclocked flip-flop can be converted to clocked
flip-flop by ANDing the clock pulse and the input information prior to
their application to each input of the flip-flop.

The flip-flops introduced in this section are the most common types
available commercially. The analysis and design procedures developed in this
and the next chapter are applicable for any clocked flip-flop once its
characteristic table is defined.

6-3 TRIGGERING OF FLIP-FLOPS

The state of a flip-flop is switched by a momentary change in the input
signal. This momentary change is called a trigger and the transition which it
causes is said to trigger the flip-flop. Asynchronous flip-flops, such as the
basic circuits of Figs. 6-2 and 6-3, require an input trigger defined by a
change of signal level. This level must be returned to its initial value (O in
the NOR and 1 in the NAND flip-flop) before applying a second trigger.
Clocked flip-flops are triggered by pulses. A pulse starts from an initial
value of 0, goes momentarily to 1, and after a short time, returns to its
initial O value. The time interval from the application of the pulse until the
output transition occurs is a critical factor that needs further investigation.

As seen from the block diagram of Fig. 6-1, a sequential circuit has a
feedback path between the combinational circuit and the memory elements.
This path can produce instability if the outputs of memory elements
(flip-flops) are changing while the outputs of the combinational circuit that
go to flip-flop inputs are being sampled by the clock pulse. This timing
problem can be prevented if the outputs of flip-flops do not start changing
until the pulse input has returned to 0. To insure such an operation, a
flip-flop must have a signal propagation delay from input to output in
excess of the pulse duration. This delay is usually very difficult to control
if the designer depends entirely on the propagation delay of logic gates.
One way of insuring the proper delay is to include within the flip-flop
circuit a physical delay unit having a delay equal to or greater than the
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pulse duration. More commonly, the flip-flop is triggered during the trailing
edge of the pulse as discussed below.

A clock pulse may be either positive or negative, depending on whether
positive or negative logic is employed. A clock source remains at logic-0
between pulses and goes to logic-l1 during the occurrence of a pulse. A
pulse goes through two signal transitions: from O to 1 and the return from
1 back to 0. As shown in Fig. 6-8, the initial transition is defined as the
leading edge and the return transition as the trailing edge. The two edges
may be either rising or falling depending on whether we have positive or
negative pulses.

The clocked flip-flops introduced in Sec. 6-2 are triggered during the
leading edge of the pulse; that is, the state transition starts as soon as the
pulse reaches the logic-1 level. The new state of the flip-flop may appear at
the output terminals while the input pulse is still a 1. When this happens,
the output of one flip-flop cannot be used as a condition for triggering
another flip-flop when both respond to the same clock pulse. When flip-
flops are triggered during the trailing edge of the pulse, the new state of
the flip-flop appears at the output terminals after the pulse signal has gone
back to 0. This is in effect a way of achieving the needed delay mentioned
previously.

The time dependence of sequential circuits is best illustrated in a timing
diggram. A timing diagram shows how the signals at various terminals vary
over time. Each terminal in a timing diagram is assigned two coordinates: a
horizontal coordinate to represent time and a vertical coordinate to repre-
sent signal amplitude. An example of a timing diagram that demonstrates
the difficulty encountered when flip-flops are triggered on the leading edge
of a clock pulse is shown in Fig. 6-9(a). The diagram shows the signals of a

Positive pulse Negative pulse
1 0

0 1
Leading | | Trailing ‘ Leading _T | Trailing
edge

edge edge edge
Figure 6-8 Definition of leading and trailing edge of a pulse

clock pulse (CP) terminal, a J input terminal and a Q output terminal of a
clocked JK flip-flop. It is assumed that the signal at J comes from the
output of some other flip-flop triggered by the same clock pulses. The
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signal at J starts its transition from O to 1 during the leading edge of clock
pulse #;. Output Q may or may not switch to 1 during clock pulse #;. This
is because input J is in a state of transition during the pulse interval and
may sometimes be detected as a O signal and sometimes as a 1 signal. The
best way to avoid this ambiguity is to insure that the flip-flop is not
triggered while input J is in transition. It should be triggered at time z,,
when input J is maintained at logic-1, which requires additional control
signals not indicated in the timing diagram. Under this condition, the signal
at J must remain at logic-1 during pulse interval ¢, and can return to
logic-0 during clock pulse #3 or later.

] 3

CcP

0
(a) Leading edge triggering
t t t
1 1 2 3
23 |
0 L

i
o ! }/

(b) Trailing edge triggering

Figure 6-9 Timing diagram for a JK flip-flop

Now consider the same timing sequence with flip-flops being triggered on
the trailing edge of the pulse as shown in Fig. 6-9(b). The signal at J
becomes a 1 after the termination of pulse interval #,. Output Q remains a
0 after ¢, because J is a O during the pulse interval. During pulse interval
t,, input J of the flip-flop is a 1, so output Q starts switching to 1 at the
trailing edge of ¢,. The same ¢, pulse is used to trigger the other flip-flop
that returns the signal at J to 0. This is possible because the signal at J
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remains a ! until the end of the clock pulse. Thus, with trailing-edge
triggering, it is possible to switch the output of a flip-flop and its input
information with the same clock pulse. The trailing-edge trigger allows the
application of the same clock pulse to all flip-flops. The state of all
flip-flops can be changed simultaneously since the new state appears at the
output terminals only after the clock pulse has returned to O.

One way to make a flip-flop respond to the trailing edge of a pulse is to
use AC coupling; i.e., insert a capacitor in the input. The capacitor forms a
circuit capable of generating a spike as a response to a momentary change
of input signal amplitude. A positive pulse emerges from such a circuit with
a positive spike from the leading edge and a negative spike from the trailing
edge. Trailing-edge operation is achieved by designing the flip-flop to neglect
a positive spike and trigger on the occurrence of a negative spike.

Another method for achieving state transition during the trailing edge of
a clock pulse is to employ two flip-flop circuits; one to hold the output
state until the trailing edge and the other to sample the input information
on the leading edge. Such a combination is called a master-slave flip-flop.

L,
]——_Do_s YDO_

D
D} . Y:—D—D)
. By

Figure 6-10 Clocked master-slave JK flip-flop

An example of a master-slave JK flip-flop constructed with NAND gates
is shown in Fig. 6-10. It consists of two flip-flops; gates 1 through 4 form
the master flip-flop and gates 5 through 8 form the slave flip-flop. The
information present at the J and K inputs is transmitted to the master
flip-flop on the leading edge of a clock pulse and held there until the
trailing edge of the clock pulse occurs, after which it is allowed to pass
through to the slave flip-flop. The clock input is normally O, which keeps
the outputs of gates 1 and 2 at the logic-1 level. This prevents the J and K

Ql
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inputs from affecting the master flip-flop. The slave flip-flop is a clocked
RS type with the master flip-flop supplying the inputs and the clock input
being inverted by gate number 9. When the clock is 0, the output of
gate 9 is 1, so that output Q is equal to ¥ and Q' is equal to Y'. When
the leading edge of a clock pulse occurs, the master flip-flop is affected and
may switch states. The slave flip-flop is isolated as long as the clock is at
logic-1 level, because the output of gate 9, being at 0, provides a 1 to both
inputs of the NAND basic flip-flop of gates 7 and 8. When clock input
returns to O, the master flip-flop is isolated from the J and K inputs, and
the slave flip-flop goes to the same state as the master flip-flop.

The master-slave combination can be constructed for any type of flip-
flop. A leading-edge flip-flop is converted to a master-slave by the addition
of a clocked RS flip-flop with an inverted clock input to form the slave
flip-flop. We shall assume throughout the rest of the book that all flip-flop
types change state after the trailing edge of the clock pulse.

Among the different types of flip-flops, the JK master-slave is the one
used most in the design of digital systems. Some JK flip-flops available in
IC packages provide additional inputs for setting and clearing the flip-flop
asynchronously. These inputs are usually called “direct set” and “direct
clear.” They affect the flip-flop on a positive (or negative) swing of a signal
amplitude without the need of clock pulses. These inputs are useful for
bringing the flip-flops to an initial state prior to its clocked operation.

6-4 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

The behavior of a sequential circuit is determined from the inputs, the
outputs, and the state of its flip-flops. Both the outputs and next state are
a function of the inputs and the present state. The analysis of sequential
circuits consists of obtaining a table or a diagram for the time sequence of
inputs, outputs, and internal states. It is also possible to write Boolean
expressions that describe the behavior of sequential circuits. However, these
expressions must include the necessary time sequence either directly or
indirectly.

A logic diagram is recognized as the circuit of a sequential circuit if it
includes flip-flops. The flip-flops may be of any type and the logic diagram
may or may not include combinational gates. In this section we shall first
introduce a specific example of a clocked sequential circuit and then
present various methods for describing the behavior of sequential circuits.
The specific example will be used throughout the discussion to illustrate the
various methods.
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An Example of a Sequential Circuit

An example of a clocked sequential circuit is shown in Fig. 6-11. It has
one input variable x, one output variable y, and two clocked RS flip-flops
labeled 4 and B. The cross connections from outputs of flip-flops to inputs
of gates are not shown by line drawings so as to facilitate the tracing of
the circuit. Instead, the connections are recognized from the letter symbol
marked in each input. For example, the input marked x' in gate number 1
designates an input from the complement of x. The second input marked A
designates a connection to the normal output of flip-flop A.

We shall assume trailing-edge triggering in both flip-flops and in the
source that produces the external input x. Therefore, the signals for a given
present state are available during the time from the termination of a clock
pulse to the termination of the next clock pulse, at which time the circuit
goes to the next state.

State Table
The time sequence of inputs, outputs, and flip-flop states may be

enumerated in a state table*. The state table for the circuit of Fig. 6-11
is shown in Table 6-1. It consists of three sections labeled present state,

=—
A — y
B'—

cp

:;I _IJ\* RO B’
cp

;‘, _3_/L RO Al

Db b

Figure 6-11 Example of a clocked sequential circuit

*Switching circuit theory books call this table a transition table. They reserve the
name state table for a table with internal states represented by arbitrary symbols.
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Table 6-1 State Table for Circuit of Fig. 6-11

Next state Output
Present State x =20 x =1 x =0 x =1
AB AB AB y y
00 00 01 0 0
01 11 01 0 0
10 10 00 0 1
11 10 11 0 0

next state, and output. The present state designates the state of flip-flops
before the occurrence of a clock pulse. The next state shows the state of
flip-flops after the application of a clock pulse, and the output section
lists the value of the output variable during the present state. Both the
next state and output sections have two columns, one for x = 0 and the
other for x = 1.

The derivation of the state table starts from an assumed initial state. The
initial state of most practical sequential circuits is defined to be the state
with 0’s in all flip-flops. Some sequential circuits have a different initial
state and some have none at all. In either case, the analysis can always start
from any arbitrary state. In this example, we start deriving the state table
from the initial state 0O.

When the present state is 00, 4 = 0 and B = 0. From the logic diagram
we see that with both flip-flops cleared and x = 0, none of the AND gates
produce a logic-1 signal. Therefore, the next state remains unchanged. With
AB = 00 and x = 1, gate number 2 produces a logic-1 signal at the S
input of flip-flop B and gate number 3 produces a logic-1 signal at the R
input of flip-flop A. When a clock pulse triggers the flip-flops, 4 is cleared
and B is set, making the next state 01. This information is listed in the
first row of the state table.

In a similar manner, we can derive the next state starting from the other
three possible present states. In general, the next state is a function of the
inputs, the present state, and the type of flip-flop used. With RS flip-flops,
for example, we must remember that a 1 in input S sets the flip-flop and a
1 in input R clears the flip-flop, irrespective of its previous state. A O in
both the S and R inputs leaves the flip-flop unchanged, while a 1 in both
the § and R inputs shows a bad design and an indeterminate state table.

The entries for the output section are easier to derive. In this example,
output y is equal to 1 only when x = 1, 4 = 1, and B = 0. Therefore,
the output columns are marked with 0’s except when the present state is
10 and input x = 1, for which y is marked with a 1.
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The state table of any sequential circuit is obtained by the same
procedure used in the example. In general, a sequential circuit with m
flip-flops and »n input variables will have 2™ rows, one for each state. The
next state and output sections each will have 27 columns, one for each
input combination.

The external outputs of a sequential circuit may come from logic gates
or from memory elements. The output section in the state table is neces-
sary only if there are outputs from logic gates. Any external output taken
directly from a flip-flop is already listed in the present state column of the
state table. Therefore, the output section of the state table can be excluded
if there are no external outputs from logic gates. A sequential circuit whose
state table includes an output section is sometimes called a Mealy machine.
A circuit whose state table does not list the outputs explicitly is called a
Moore machine. Mealy and Moore are the names of the original investigators
of the respective sequential circuits.

State Diagram

The information available in a state table may be represented graphically
in a state diagram. In this diagram, a state is represented by a circle and
the transition between states is indicated by directed lines connecting the
circles. The state diagram of the sequential circuit of Fig. 6-11 is shown in
Fig. 6-12. The binary number inside each circle identifies the state the
circle represents. The directed lines are labeled with two binary numbers
separated by a /. The input value that causes the state transition is labeled
first; the number after the symbol / gives the value of the output during
the present state. For example, the directed line from state 00 to 01 is
labeled 1/0, meaning that the sequential circuit is in a present state 00
while x = 1 and y = 0 and that on the termination of the next clock

0/0
A=) 20)

1/0
Figure 6-12 State diagram for circuit of Figure 6-11
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pulse, the circuit goes to next state 0l. A directed line connecting a circle
with itself indicates that no change of state occurs. The state diagram
provides the same information as the state table and is obtained directly
from Table 6-1.

There is no difference between a state table and a state diagram except
in the manner of representation. The state table is easier to derive from a
given logic diagram and the state diagram follows directly from a state
table. The state diagram gives a pictorial view of state transitions and is in
a form suitable for human interpretation of the circuit operation. The state
diagram is often used as the initial design specification of a sequential
circuit.

State Equations

A state equation (also known as an application equation) is an algebraic
expression that specifies the conditions for a flip-flop state transition. The
left side of the equation denotes the next state of a flip-flop and the right
side, a Boolean function that specifies the present state conditions that
make the next state equal to 1. A state equation is similar in form to a
flip-flop characteristic equation except that it specifies the next state condi-
tions in terms of external input variables and other flip-flop values. The
state equation is derived directly from a state table. For example, the state
equation for flip-flop A is derived from inspection of Table 6-1. From the
next state columns we note that flip-flop A goes to the 1-state four times:
when x = 0 and 4B = 01 or 10 or 11, or when x = 1 and AB = 11.
This can be expressed algebraically in a state equation as follows:

At + 1) = (A'B + AB' + AB' + ABx

The right-hand side of the state equation is a Boolean function for a
present state. When this function is equal to 1, the occurrence of a clock
pulse will cause flip-flop 4 to have a next state of 1. When the function is
equal to O, the clock pulse will cause A to have a next state of 0. The left
side of the equation identified the flip-flop by its letter symbol, followed
by the time function designation (¢ + 1) to emphasize that this value is to
be reached by the flip-flop one pulse sequence later.

The state equation is a Boolean function with time included. It is
applicable only in clock sequential circuits since A(¢ + 1) is defined to
change value with the occurrence of a clock pulse at discrete instants of

time.
The state equation for flip-flop A is simplified by means of a map as

shown in Fig. 6-13(a). With some algebraic manipulation the function can
be expressed in the following form:

Aft+ 1) =Bx' + (B'x)A4
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Bx BA Bx _A—B
400 01 ~11 10 00 01 _11__10
1
0 1 0 1 )] 1
A{l 1 |1 L] A{l 1
\.—-wx—-——/ _—;—/
At +1)=Bx + (B +x) 4 B(t+1)=A'x+ (4 +x)B
(a) — Bx' + (B'x)'A (b) = Ax+ (Ax')'B

Figure 6-13 State equations for flip-flops A and B

If we let Bx' = S and B'x = R we obtain the relation:
Aft+1)=S+R'A

which is the characteristic equation of an RS flipflop (Fig. 6-4(d)). This
relation between the state equation and the flip-flop characteristic equation
can be justified from inspection of the logic diagram of Fig. 6-11. In it we
see that the S input of flip-flop 4 is equal to the Boolean function Bx' and
the R input is equal to B'x. Substituting these functions into the flip-flop
characteristic equation results in its state equation for this sequential circuit.

The state equation for a flip-flop in a sequential circuit may be derived
from a state table or from a logic diagram. The derivation from the state
table consists of obtaining the Boolean function specifying the conditions
that make the next state of the flip-flop 1. The derivation from a logic
diagram consists of obtaining the functions of the flip-flop inputs and
substituting them into the flip-flop characteristic equation.

The derivation of the state equation for flip-flop B from the state table
is shown in the map of Fig. 6-13(b). The 1’s marked in the map are the
present state and input combinations that cause the flip-flop to go to a
next state of 1. These conditions are obtained directly from Table 6-1. The
simplified form obtained in the map is manipulated aigebraically and the
state equation obtained is:

B(t+1)=A'x + (4x")B

The state equation can be derived directly from the logic diagram. From
Fig. 6-11 we see that the signal for input S of flip-flop B is generated by
the function A'x and the signal for input R by the function Ax’.
Substituting S = A’x and R = Ax' into an RS flip-flop characteristic
equation given by:

B(t+1)=S+R'B

we obtain the state equation derived above.
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The state equations of all flip-flops, together with the output functions,
fully specify a sequential circuit. They represent, algebraically, the same
information a state table represents in tabular form and a state diagram in
graphical form.

Flip-Flop Input Functions

The logic diagram of a sequential circuit consists of memory elements
and gates. The type of flip-flops and their characteristic table specify the
logical properties of the memory elements. The interconnections among the
gates form a combinational circuit and may be specified algebraically with
Boolean functions. Thus, knowledge of the type of flip-flops and a list of
the Boolean functions of the combinational circuit provide all the informa-
tion needed to draw the logic diagram of a sequential circuit. The part of
the combinational circuit that generates external outputs is described
algebraically by the circuit output functions. The part of the circuit that
generates the inputs to flip-flops are described algebraically by a set of
Boolean functions called flip-flop input functions, or sometimes input
equations.

We shall adopt the convention of using two letters to designate a
flip-flop input variable; the first to designate the name of the input and the
second the name of the flip-flop. As an example, consider the following
flip-flop input functions:

JA = BC'x + B'Cx'
KA =B+y

JA and KA designate two Boolean variables. The first letter in each denotes
the J and K input, respectively, of a JK flip-flop. The second letter A is
the symbol name of the flip-flop. The right side of each equation is a
Boolean functioi for the corresponding flip-flop input variable. The
implementation of the two input functions is shown in the logic diagram of
Fig. 6-14. The JK flip-flop has an output symbol 4 and two inputs labeled
J and K. The combinational circuit drawn in the diagram is the implementa-
tion of the algebraic expression given by the input functions. The outputs
of the combinational circuit are denoted by J4 and KA in the input
functions and go to the J and K inputs, respectively, of flip-flop 4.

From this example we see that a flip-flop input function is an algebraic
expression for a combinational circuit. The two-letter designation is a
variable name for an output of the combinational circuit. This output is
always connected to the input (designated by the first letter) of a flip-flop
(designated by the second letter).

The sequential circuit of Fig. 6-11 has one input x, one output y, and
two RS flip-flops denoted by 4 and B. The logic diagram can be expressed
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Figure 6-14 Imple’mentat,ion of the flip-flop input functions: JA
=BC'x +B'Cx' and KA =B +y

algebraically with four flip-flop input functions and one circuit output
function as follows:

SA = Bx' RA = B'x

SB = A'x RB = Ax'

y = AB'x
This set of Boolean functions fully specifies the logic diagram. Variables

SA and RA specify an RS flip-flop labeled A; variables SB and RB specify
a second RS flip-flop labeled B. Variable y denotes the output. The
Boolean expressions for the variables specify the combinational circuit part
of the sequential circuit.

The flip-flop input functions constitute a convenient algebraic form for
specifying a logic diagram of a sequential circuit. They imply the type of
flip-flop from the first letter of the input variable and they fully specify
the combinational circuit that drives the flip-flop. Time is not included
explicitly in these equations but is implied from the clock-pulse operation.
It is sometimes convenient to specify a sequential circuit algebraically with
- circuit output functions and flip-flop input functions instead of drawing the
logic diagram.

6-5 COUNTERS

A sequential circuit that goes through a prescribed sequence of states upon
the application of input pulses is called a counter. The input pulses, called
count pulses, may be clock pulses or may originate from an external source
and may occur at prescribed intervals of time or at random. The sequence
of states in a counter may follow a binary count or any other sequence of
states. Counters are found in almost all equipment containing digital logic.
They are used for counting the number of occurrences of an event and are
useful for generating timing sequences to control operations in a digital
system.
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Of the various sequences a counter may follow, the straight binary sequence
is the simplest and most straightforward. A counter that follows the binary
number sequence is called a binary counter. An n-bit binary counter consists of
n flip-flops and can count in binary from 0 to 2% — 1. As an example, the state
diagram of a four-bit binary counter is drawn in Fig. 6-15. As seen from the
state sequence listed inside each circle, the flip-flop outputs repeat the binary
count sequence with a return to 0000 after the count of 1111. The directed lines
between circles are not marked with numbers because a counter is considered to
be void of inputs and outputs. This is because input pulses are implied in clock
sequential circuits and are not considered as input information. The outputs of a
counter are the outputs of its flip-flops so that the output information is
available from the present state. The present state of a counter as specified by
the binary number inside a circle remains unchanged as long as an input pulse is
absent. The directed line points to the next state reached after the occurrence of
a count pulse.

Counters may have any sequence and may be operated synchronously or
asynchronously. They are used extensively in the design of digital systems and
are classified as standard items. A wide variety of counter circuits are available in
MSI packages.

In this section we shall introduce a few simple counters and investigate their
operation. A procedure for designing synchronous counters of any sequence is
found in Sec. 7-5.

Figure 6-15 State diagram of a 4-bit binary counter
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Binary Ripple Counter

A binary ripple counter is the most elementary digital circuit that performs
the most elementary binary function. It consists of a series connection of T
flip-flops without any logic gates. Each flip-flop is triggered by the output of its
preceeding flip-flop. To understand the operation of the counter, it is necessary
to go back to the state diagram of Fig. 6-15 and investigate the sequence of
numbers inside circles. Going through all 16 numbers in sequence we note that
the least significant bit is complemented with every state transition. The second
significant bit is complemented during a transition from 1 to O of the least
significant bit. Similarly, any significant bit in a binary count sequence is
complemented during the transition from 1 to 0 of its preceeding significant bit.
The binary ripple counter performs this binary count sequence with com-
plementing T flip-flops as follows: the least significant flip-flop is complemented
every count pulse and each succeeding flip-flop is complemented when its
previous flip-flop goes from 1 to O.

Two logic diagrams of a four-bit binary ripple counter are shown in
Fig. 6-16. Each consists of four T flip-flops with the output of one
flip-flop going into the input of the next on its left. The first flip-flop is
complemented with each count pulse. The other flip-flops are complemented
when the normal output of the preceeding flip-flop changes from 1 to O.
Each flip-flop serves as a source for triggering the next flip-flop and the

Q; Q, 2, Q9

1 1 1 11 Il
T -—-I_ T 1 T —l_ Tp——— Count pulses
0 0 0 0

(a) With flip-flops triggered on positive-going edge

Qs 2, Q, Qo
p b Count pulses
CcP CcP CP CcP
1 1 L1 L1
T T . T T T
0 0 0 0
< logic-1 signal

(b) With clocked flip-flops triggered
on the trailing edge of the pulse

Figure 6-16 Asynchronous 4-bit binary counters
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signal propagates through the counter in a “ripple” fashion; i.e., the flip-
flops essentially change one at a time in rapid succession. This is in contrast
to a synchronous counter where all flip-flops change state simultaneously
with the incoming count pulse.

The binary ripple counter of Fig. 6-16(a) uses unclocked flip-flops
triggered on the positive-going edge of a changing signal amplitude. In a
positive logic system, this means that the flip-flop starts changing states
when its input goes from O to 1. Therefore, we must connect the com-
plement output of a flip-flop to the T input of the next flip-flop, since the
complement output goes from Q to 1 (the required signal) when the normal
output goes from 1 to O (the required numerical condition).

The circuit of Fig. 6-16(b) uses clocked flip-flops with trailing-edge
triggering. In a positive logic system, this means that the change of state
occurs during a signal transition from 1 to 0. Therefore, the normal output
of one flip-flop is connected to the CP input of the next. The T inputs are
connected permanently to a logic-1 signal so that the state transition is
controlled entirely by the CP input. The timing diagram for each flip-flop
of Fig. 6-16(b) is shown in Fig. 6-17. Note that except for flip-flop Qq, the
state transition is not caused by the pulse input but by the signal transition
from 1 to O of the previous flip-flop.

Synchronous Binary Counter

In a synchronous counter, all flip-flops are triggered simultaneously by
the count pulse. As shown in Fig. 6-18, all CP terminals are connected to
the count pulse, but the flip-flop is complemented only if its T input is
equal to 1. The condition for state transition is now determined from the
present state value of other flip-flops. These conditions are derived from
inspection of the state diagram of Fig. 6-15. Going through the sequence of

Count IlllIlllllllllllllllIlllllllllll
pulses

00000000]11111111]2

Figure 6-17 Timing diagram for counter of Figure 6-16 (b)
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Q3 Q2 9, Qo
Count
cP cP CcP cP pulses
1 1 1 1
T T T T logic-1
0 0 0 0
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Figure 6-18 Synchronous 4-bit binary counter

binary numbers, we note that a bit is complemented if all previous least
significant bits in the present state equal 1. Therefore, a flip-flop in a
synchronous counter is allowed to be complemented by a count pulse if all
previous flip-flops on its right have normal outputs equal to 1. This is
shown in the logic diagram and also expressed algebraically by the following
flip-flop input functions

700 = 1 -
TQ; = Qo

TQ; = Q0@

TQ; = 00C1Q2

An n-bit synchronous binary counter consists of n T flip-flops. The
flip-flop input functions can be written in a concise form as follows:

TQ; =vl'[0 Q; fori=1,2,3,...,n
j=

where II is a product sign designating the AND operation. The T input of a
flip-flop Q; receives the output of an AND gate whose inputs come from
flip-flops Q; from j = 0 toj = i — 1. In addition the CP terminal in each
flip-flop receives the input count pulses.

The advantage of a synchronous counter over a ripple counter is in its
higher speed of operation. When the input count pulse arrives, all flip-flops
are triggered and may change states simultaneously. The delay from the
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time the input is applied until all flip-flops reach the next state is equal to
the signal transition time of a single flip-flop. The signal propagates through
the AND gates during the time between pulses so that the signals in the T
inputs of flip-flops are settled to a steady-state value waiting for the next
count pulse. In a ripple counter, the signal propagates, or ripples, through
all flip-flops and when all the flip-flops change state, as for example from
1111 to 0000, the total delay is equal to four flip-flop transitions. Ripple
counters have logic simplicity and therefore cost less. They are preferable if
speed of operation is not critical.

Decimal BCD Ripple Counter

A decimal counter follows a sequence of 10 states and returns to Q after
the count of 9. Such a counter must have at least four flip-flops to
represent each decimal digit, since a decimal digit is represented by a binary
code with at least four bits. The sequence of states in a decimal counter is
dictated by the binary code used to represent a decimal digit. If BCD is
used (Table 1-2), the sequence of states is as shown in the state diagram of
Fig. 6-19. This is similar to a binary counter except that the state after
1001 (code for decimal digit 9) is 0000 (code for decimal digit 0).

The design of synchronous decimal counters using any code is presented
in Sec. 7-5. The design of a decimal ripple counter or of any ripple counter
not following the binary sequence is not a straightforward procedure. The
formal tools of logic design can serve only as a guide. A satisfactory end
product requires the ingenuity and imagination of the designer.

The logic diagram of a BCD ripple counter is shown in Fig. 6-20. The
four outputs are designated by the letter symbol Q with a numeric sub-
script equal to the binary weight of the corresponding bit in the BCD code.
The flip-flops are assumed to trigger on the trailing edge; i.e., when the CP
signal goes from 1 to 0. Note that the output of Q, is applied to the CP
inputs of both @, and Qg and the output of Q, is applied to the CP input
of Q4. The J and K inputs are connected either to a permanent logic-1
signal or to outputs of flip-flops, as shown in the diagram.

A ripple counter is an asynchronous sequential circuit and cannot be
described by Boolean equations developed for describing clocked sequential
circuits. Signals that affect the flip-flop transition depend on the order in
which they change from 1 to 0. The operation of the counter can be
explained by a list of conditions for flip-flop transitions. These conditions
are derived from the logic diagram and from knowledge of how a JK
flip-flop operates . Remember that when the CP input goes from 1 to 0, the
flip-flop is set if J = I, is cleared if K = 1, is complemented if both J = K
=1, and is left unchanged if both J = K = 0. The following are the
conditions for each flip-flop state transition:
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Figure 6-19 State diagram of decimal BCD counter
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Figure 6-20 Logic diagram of a decade BCD ripple counter

Flip-flop Q; is complemented on the trailing edge of a count pulse.

Flip-flop Q, is complemented if Qs = 0 and Q, switches from 1 to 0.
It is cleared if Qs = 1 and Q, switches from 1 to 0.

Flip-flop Q4 is complemented when Q, switches from 1 to 0.

Flipflop Qs is complemented if Q, = 1 and @4 = 1 and Q, switches
from 1 to 0. It is cleared if O, = 0 or Q4 = 0 and Q, switches
from 1 to O.

To verify that these conditions result in the sequence required by a BCD
counter, it is necessary to verify that the flip-flop transitions indeed follow
a sequence of states as specified by the state diagram of Fig. 6-19. Another
way to verify the operation of the counter is to derive the timing diagram
for each flip-flop from the conditions listed above. This diagram is shown in
Fig. 6-21, from which we see that the flip-flops follow the required
sequence of states.
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The decimal counter of Fig. 6-20 is a one decade counter; ie., it counts
from O to 9 only. To count higher than 9 we need decade counters, one
for each decimal digit. For example, a three-decade decimal counter is
shown in Fig. 6-22. Each box in the diagram represents a BCD decade
counter similar to the one in Fig. 6-20 so that the total count ranges from
000 to 999. The inputs to the second and third decades come from Qg of
the previous decade. When output Qg of one decade goes from | to O, it
triggers flip-flop @, of the next decade, while its own decade goes from
100l to 0000. Thus the carry from Qg in one decade is used to trigger the
count in the next decade.

6-6 SHIFT-REGISTER

Binary information is stored in groups of flip-flops called registers. A group
of n flip-flops, called an n-bit register, is capable of storing n-bits of
information. In this section we shall investigate the operation of an often
used register called shift-register. This register has many applications in the
design of digital systems and is available in IC form as an MSI function.

The logic diagram of a four-bit shift-register is shown in Fig. 6-23. It is
composed of four clocked flip-flops with D inputs. The register is used for
temporary storage of a four-bit datum. Data can be transferred in and out
of the register in three different modes dictated by control signals P, Sg,
and §;. The three modes are parallel transfer, serial shift-right transfer, and
serial shift-left transfer, respectively. The three transfer modes operate as
follows:

PARALLEL TRANSFER: with P =1, S = 0, §; = 0, the data avail-
able in inputs x, through x; are transferred into A4, through A, res-
pectively. This is called parallel transfer because all flip-flops receive new

Count
0,0t Jo_J1 |o [ o i o [t Jo

Q20 0 1 1 0 0 1 1 0 0 0

0,0 0 0o o i 1 1 1t Jo o o

1) 0 0 0 0 0 0 0 0 1 1 0
8

Figure 6-21 Timing diagram for decimal counter of Figure 6-20
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Figure 6-23 Logic diagram of a shift-register
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data during one clock pulse. Data stored in the register is transferred out in
parallel by sampling the outputs of the four flip-flops.

SHIFT-RIGHT: with S =1, P = 0, Sy = 0, the data in the register is
shifted to the right upon the occurrence of each clock pulse. Each flip-flop
receives new data from its neighbor on the left and flip-flop A5 receives its
data from external input /. Data is transferred out by sampling the output
of flip-flop A,. This is called serial transfer because one bit is transferred in
and out of the register during one clock pulse.

SHIFT-LEFT: with §; =1, P = 0, Sg = 0, the data in the register is
transferred to the left. Each flip-flop receives its new data from the
neighbor on its right and A, receives its data from external input /;. Data
is transferred out by sampling the output of 4;. This again is a serial
transfer but its direction is toward the left. .

The logic diagram of Fig. 6-23 may be specified algebraically by four
flip-flop input functions as follows:

DA, = I;S; + xoP + A;Sg
DA, = A,S; + x,P + A,8g
DA, = A,S; + x,P + A58y
DA3 = A,S; + x3P + IpSi

The D input of each flip-flop receives data from three different sources.
The first, second, and third term in each function give the conditions for
shift-left, parallel transfer, and shift-right, respectively. Only one of the
three control signals should be equal to 1 at any time. Otherwise, if two or
three control signals are equal to logic-l simultaneously, the D input to a
flip-flop will respond to the OR of the input data bits.

There are four flip-flops and nine inputs (plus the CP input) in the logic
diagram of Fig. 6-23, so that a state table or diagram will consist of 16
states and 2° input combinations. Only some of the input combinations
may occur during normal operation. Nevertheless, a table or diagram show-
ing all allowable input combinations will be excessively complicated. The
state table for this particular sequential circuit may be broken into three
parts, one for each transfer mode, since the three modes are mutually
exclusive. For example, the state table for the shift-left mode is listed in
Table 6-2. In this mode, it is assumed that S; =1 and that the input to
the circuit is /;. An output section is not included in the table because the
output is equal to the present state of A;.

A binary number stored in a register is multiplied by 2 when it is
shifted once to the left and divided by 2 when shifted once to the right.
However, this is true only if the bit shifted out is not lost. To illustrate,
consider a five-bit shift-register with the number 01100 stored in it. This
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Table 6-2 State Table of a Shift-Left Register.
S, =1,8Sg=0,P =0

Next state
Present State I =1 I = 0
Ay Ay A, Ae | A3 Ay 4, A¢ | A3 A4, A Ap
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0 0 1 0
0 0 1 0 0 1 0 1 0 1 0 0
0 0 1 1 0 1 1 1 0 1 1 0
0 1 0 0 1 0 0 1 1 0 0 0
0 1 0 1 1 0 1 1 1 0 1 0
0 1 1 0 1 1 0 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 1 0
1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 1 1 0 0 1 0
1 0 1 0 0 1 0 1 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 0
1 1 0 0 1 0 0 1 1 0 0 0
1 1 0 1 1 0 1 1 1 0 1 0
1 1 1 0 1 1 0 1 1 1 0 0
1 1 i 1 1 1 1 1 1 1 1 0

binary number is equivalent to decimal 12. When shifted once to the left,
the content of the register becomes 11000, the equivalent of decimal 24.
Shifting the original number once to the right changes the content of the
register to 00110, the equivalent of decimal 6.

A shift-register can temporarily store binary data and transfer this data in
and out of the register. Strictly speaking, a shift-register transfers data
serially a bit at a time. The transfer of data in parallel is an added feature
included in most MSI packages so as to provide a more flexible register.

PROBLEMS

6-1. Show the logic diagram of a clocked RS flip-flop with four NAND
gates.

6-2. Show the logic diagram of a clocked D flip-flop with AND/NOR gates.
6-3. Show that the clocked D flip-flop of Fig. 6-5(a) can be reduced by
one gate.

6-4. Obtain the logic diagram of a master-slave JK flip-flop with AND and
NOR gates. Include a provision for setting and clearing the flip-flop
asynchronously (without a clock).
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6-5.

6-7.

SEQUENTIAL LOGIC Chap. 6

Consider a JK' flip-flop; ie., a JK flip-flop with an inverter between
external input K' and internal input K.

(a) Obtain the flip-flop characteristic table.
(b) Obtain the characteristic equation.

(c) Show that tying the two external inputs together forms a D
flip-flop.

. A set-dominate flip-flop has a set and a reset input. It differs from a

conventional RS flip-flop in that an attempt to simultaneously set and
reset results in setting the flip-flop.

(a) Obtain the characteristic table and characteristic equation for the
set-dominate flip-flop.

(b) Obtain a logic diagram for an asynchronous set-dominate flip-flop.

The logic diagram of Fig. P6-7 has an input x and clock pulses (CP) as
shown. Assume positive logic and that the flip-flop changes state at the
trailing edge of the positive pulse. Draw the timing diagram of x, x', 4,
A', flip-flop inputs S and R, and output y. Start by assuming that the
flip-flop is initially in the set-state and later justify your assumption.
What is the function of this circuit?

S O e
_— | I

6-8.

—44—'Lx

CcP

For the circuit of Fig. P6-7:

(a) Obtain the flip-flop input functions and the output Boolean
function.

(b) Obtain the state table and state diagram.

(c) Derive the state equation from the state table and again directly
from the logic diagram and show that both results are the same.
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6-9. The full-adder of Fig. P6-9 receives two external inputs x and y, the
third input z comes from the output of a D flip-flop. The carry
output is transferred to the flip-flop every clock pulse. The external S
output gives the sum of x, y, and z. Assume that x and y change
after the trailing edge of the clock pulse. Obtain the state table and
state diagram of the sequential circuit.

X ————d S
Full
y *1 adder C
1CP
z 1
D
—0

6-10. Derive the state table and state diagram of the sequential circuit
shown in Fig. P6-10. What is the function of the circuit?

CP

6-11. A sequential circuit has four flip-flops 4, B, C, D and an input x. It
is described by the following state equations:

A (t+1)=(CD + CD)x + (CD + C'D") x'

B(t+1)=4
C(t+1)=8B
D@+1)=C

Draw the logic diagram using D flip-flops and obtain the state
diagram.
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6-12.

SEQUENTIAL LOGIC Chap. 6

A sequential circuit has two flip-flops (4 and B), two inputs (x and
y), and an output (z). The flip-flop input functions and the circuit
output function are as follows:

JA = xB +y'B' KA = xy'B’'
JB = xA' KB

xy' + A4

z=xyA + x'y'B
Obtain the logic diagram, state table, state diagram, and state
equations.

Draw the timing diagram for the asynchronous binary counter of
Fig. 6-16(a).

Draw the timing diagram for the decimal counter of Fig. 6-20 when
negative logic signals are employed.

. The asynchronous counter shown below uses clocked flip-flops that

trigger at the trailing edge of the pulse. Determine the sequence of
states starting from ABC = 000. What happens if the counter is
initially in state 110 or 111?

A B C
Count
pulses
cp cP cP
1 7 1 J 1 7
— 0 K 0 K 0 K
logic-1
6-16. A count-down counter is a counter with reverse count; i.e., the binary

count is reduced by one for every count pulse.
(a) Draw the state diagram of a four-bit count-down binary counter.

(b) Show that a flip-flop should be complemented when its previous
flip-flop goes from O to 1. Draw the logic diagram of a four-bit
count-down ripple binary counter.

(c) Draw the logic diagram of a synchronous four-bit count-down
binary counter.

(d) Draw the logic diagram of a counter that counts either up or
down. Use an external input x so that x = 1 for count up and
x = 0 for count down.
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6-17.

6-18.

6-19.

6-20.

6-21.

The state equations of a 2-out-of-5 counter are as follows:
A@+1)=E D(t+1)=A4'C+ AB
B@+1)=4 F (#+1)=D
C(@t+1)=A4B+ AC

Determine the count sequence starting from the state ABCDE = 01100.
Explain the reason for the name.

Given a six-bit shift-right register, the input to the left-most flip-flop
is 101101. Assume that the register is initially cleared. Show the
contents of the register after each clock pulse. Also draw a timing
diagram for the output of each flip-flop. :

A ring-counter is a shift-right register with the normal output of the
right-most flip-flop connected to the input of the left-most flip-flop.
Obtain the count sequence of a ring counter starting with the count
of 1000.

A switch-tail ring-counter is a shift-right register with the complement
output of the right-most flip-flop connected to the input of the
left-most flip-flop. Obtain the count sequence of the counter starting
with the count of 0000.

A feedback shift-register is a shift-register whose serial input is a
function of the present state of the register. Obtain the state diagram
of a feedback shift-right register whose serial input is Ip = 4,4,
+ A3 A, (see Fig. 6-23).



DESIGN OF
CLOCKED SEQUENTIAL
7 CIRCUITS

7-1 INTRODUCTION

The design of a clocked sequential circuit starts from a set of specifications
and culminates in a logic diagram or a list of Boolean functions from which
the logic diagram can be obtained. In contrast to a combinational circuit,
which is fully specified by a truth table, a sequential circuit requires a state
table for its specification. The first step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state
diagram or state equations.

A synchronous sequential circuit is made up of flip-flops and combina-
tional gates. The design of the circuit consists of choosing the flip-flops and
then finding a combinational gate structure which, together with the
flip-flops, produces a circuit that fulfils the stated specifications. The
number of flip-flops is determined from the number of states needed in the
circuit. The combinational circuit is derived from the state table by
methods presented in this chapter. In fact, once the type and number of
flip-flops are determined, the design process involves a transformation from
the sequential circuit problem into a combinational circuit problem. In this
way the techniques of combinational circuit design can be applied.

Any design process must consider the problem of minimizing the cost of
the final circuit. The two most obvious cost reductions are reductions in
the number of flip-flops and the number of gates. Because these two items
seem the most obvious, they have been extensively studied and investigated.
In fact, a large portion of the subject of switching theory is concerned with
finding algorithms for minimizing the number of flip-flops and gates in

200
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sequential circuits. However, the reader is referred to Sec. 54 for a
discussion of other criteria that must be considered in a practical situation.

The reduction of the number of flip-flops in a sequential circuit is
referred to as the state reduction problem. State reduction algorithms are
concerned with procedures for reducing the number of states in a state
table while keeping the external input-output requirements unchanged. Since
m flip-flops produce 27 states, a reduction in the number of states may (or
may not) result in a reduction in the number of flip-flops. An unpredictable
effect in reducing the number of flip-flops is that sometimes the equivalent
circuit (with less flip-flops) may require more combinational gates.

The cost of the combinational circuit part of a sequential circuit can be
reduced by using the known simplification methods for combinational
circuits. However, there is another factor that comes into play in
minimizing the combinational gates, known as the state assignment problem.
State assignment procedures are concerned with methods for choosing
binary values to states in such a way as to reduce the cost of the
combinational circuit that drives the flip-flops. This is particularly helpful
when a sequential circuit is viewed from its external input-output terminals.
Such a circuit may follow a sequence of internal states, but the binary
values of the individual states may be of no consequence as long as the
circuit produces the required sequence of outputs for any given sequence of
inputs. This does not apply to circuits whose external outputs are taken
directly from flip-flops with binary sequences fully specified, as in a binary
counter.

Most digital systems considered in this book involve the use of registers
with a prescribed number of flip-flops and binary value assignment. State
reduction and state assignment procedures offer very little help in reducing
the components in such circuits. However, state reduction and assignment
play an important part in the design of certain sequential circuits and
provide guidance to the problem of equipment minimization. For this
reason we shall explain these two problems by an illustrative example in the
next section. The enumeration of all possible algorithms and procedures for
state reduction and state assignment is beyond the s¢ope of this book.*

7-2 THE STATE REDUCTION AND ASSIGNMENT
PROBLEMS

We shall illustrate the need for state reduction and state assignment with an
example. We start with a sequential circuit whose specification is given in
the state diagram of Fig.7-1. In this example, only the input-output
sequences are important; the internal states are used merely to provide the

*The interested reader will find these two topics covered in detail in any book on
switching circuit theory (see references 1-7).
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1/1

Figure 7-1 State diagram

required sequences. For this reason, the states marked inside the circles are
denoted by letter symbols instead of their binary value. This is in contrast
to a binary counter, where the binary value sequence of the states
themselves are taken as the outputs.

There are an infinite number of input sequences that may be applied to
the circuit; each will result in a unique output sequence. As an example,
consider the input sequence 01010110100 starting from the initial state a.
Each input of 0 or 1 will produce an output of 0 or 1 and cause the
circuit to go to the next state. From the state diagram we obtain the
output and state sequence for the given input sequence as follows: with the
circuit in initial state a, and input of O produces an output of O and the
circuit remains in state . With present state a and input of 1, the output is
0 and the next state is b. With present state b and input of O, the output
is 0 and next state is c. Continuing this process, we find the complete
sequence to be as follows:

state: aab cdef fgf ga
input: 01 010110100
output: 0 0 0 0 0 1 1 01 0 O

In each column we have the present state, input value, and output value.
The next state is written on top of the next column. It is important to
realize that in this circuit the states themselves are of secondary importance
because we are interested only in output sequences caused by input
sequences.

Now let us assume that we have found a sequential circuit whose state
diagram has less than seven states and we wish to compare it with the
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circuit whose state diagram is given by Fig. 7-1. If identical input sequences
are applied to the two circuits and identical outputs occur for all input
sequences, then the two circuits are said to be equivalent (as far as the
input-output is concerned) and one may be replaced by the other. The
problem of state reduction is to find ways of reducing the number of states
in a sequential circuit without altering the input-output relations.

We shall now proceed to reduce the number of states for this example.
First, we need the state table; it is more convenient to apply procedures for
state reduction here than in state diagrams. The state table of the circuit is
listed in Table 7-1 and is obtained directly from the state diagram of
Fig. 7-1.

An algorithm for the state reduction of a completely specified state table
is given here without proof: “Two states are said to be equivalent if, for
each member of the set of inputs, they give exactly the same output and
send the circuit either to the same state or to an equivalent state. When
two states are equivalent, one of them can be removed without altering the
input-output relations.”

We shall apply this algorithm to Table 7-1. Going through the state table
we look for two present states that go to the same next state and have the
same output for both input combinations. States g and e are two such
states; they both go to states ¢ and f and have outputs of 0 and 1 for
x = 0 and x = 1, respectively. Therefore, states g and e are equivalent; one
can be removed. The procedure of removing a state and replacing it by its
equivalent is demonstrated in Table 7-2. The row with present state g is
crossed-out and state g is replaced by state e everywhere it occurs in the
next state columns.

Present state f now has next states e and f and outputs 0 and 1 for
x = 0 and x = 1, respectively. The same next states and outputs appear in
the row with present state d. Therefore, states f and d are equivalent; state
f can be removed and replaced by d. The final reduced table is shown in
Table 7-3. The state diagram for the reduced table consists of only five

Table 7-1 State Table

Next state Output
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Table 7-2 Reducing the State Table

Next state Output
Present state x =0 x =1 x =0 x =1
a a b 0 0
b c d 0 0
c a d 0 0
d e £d 0 1
e a Fd 0 1
X ge f 0 1
£ a f 0 1
Table 7-3 Reduced State Table
Next state Output
Present state x =0 x =1 x =0 x =1
a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

states and is shown in Fig.7-2. This state diagram satisfies the original
input-output specifications and will produce the required output sequence
for any given input sequence. The following list derived from the state
diagram of Fig.7-2 is for the input sequence used previously. We note that
the same output sequence results although the state sequence is different:

state: aa b cdeddedea
input: 01 010110100
output: 0 0 0 0 01 1 0 10O

In fact, this sequence is exactly the same as that obtained for Fig. 7-1 if

we replace e by g and d by f.

It is worth noting that the reduction in the number of states of a
sequential circuit is possible if one is interested only in external input-
output relations. When external outputs are taken directly from flip-flops,
the outputs must be independent of the number of states before applying

state reduction algorithms.
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1/1

Figure 7-2 Reduced state diagram

The sequential circuit of this example was reduced from seven to five
states. In either case, the representation of the states with physical
components requires that we use three flip-flops because m flip-flops can
represent up to 2™ distinct states. With three flip-flops, we can formulate
up to eight binary states denoted by binary numbers 000 to 111 with each
bit designating the state of one flip-flop. If the state table of Table 7-1 is
used, we must assign binary values to seven states, the remaining state is
unused. If the state table of Table 7-3 is used, only five states need binary
assignment and we are left with three unused states. Unused states are
treated as don’t-care conditions during the design of the circuit. Since
don’t-care conditions usually help in obtaining a simpler Boolean function,
it is more likely that the circuit with five states will require less
combinational gates than the one with seven states. In any case, the
reduction from seven to five states does not reduce the number of flip-
flops. In general, reducing the number of states in a state table is likely to
result in a circuit with less equipment. However, the fact that a state table
has been reduced to less states does not guarantee a saving in the number
of flip-flops or the number of gates.

It is now necessary to assign binary values to each state to replace the
letter symbol used thus far. Remember that, in the present example, the
binary value of the states is immaterial as long as their sequence maintains
the proper input-output relations. For this reason, any binary number
assignment is satisfactory as long as each state is assigned a unique number.
Three examples of possible binary assignments are shown in Table 7-4 for
the five states of the reduced table. Assignmentl is a straight binary
assignment for the sequence of states from a to e. The other two
assignments are chosen arbitrarily. In fact, there are 140 different distinct
assignments for this circuit (11).
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Table 7-4 Three Possible Binary State Assignments

State Assignment 1 Assignment 2 Assignment 3
a 001 000 000
b 010 010 100
c 011 011 010
d 100 101 101
e 101 111 011

Table 7-5 is the reduced state table with binary assignment 1 substituted
for the letter symbols of the five states.* It is obvious that a different
binary assignment will result in a state table with different binary values for
the states, while the input-output relations remain the same. The binary
form of the state table is used to derive the combinational circuit part of
the sequential circuit. The complexity of the combinational circuit obtained
depends on the binary state assignment chosen. In Sec. 7-3 we introduce a
procedure for obtaining the combinational circuit from the state table. The
effect of different binary assignments is demonstrated in Sec. 7-4 (Examples
7-1 and 7-2), where the design of the circuit is completed.

Various procedures have been suggested that lead to a particular binary
assighment from the many available. The most common criteria is that the
chosen assignment should result in a simple combinational circuit for the
flip-flop inputs. However, to date, there are no state assignment procedures
that guarantee a minimal cost combinational circuit. State assignment is one
of the challenging problems of switching theory. The interested reader will
find a rich and growing literature on this topic. Techniques for dealing with
the state assignment problem are beyond the scope of this book.

7-3 FLIP-FLOP EXCITATION TABLES

The characteristic tables for the various flip-flops were presented in Sec. 6-2.
A characteristic table defines the logical property of the flip-flop and
completely characterizes its operation. Integrated circuit flip-flops are
sometimes defined by a characteristic table tabulated somewhat differently.
This second form of the characteristic tables for RS, JK, D, and T flip-flops
is shown in Table 7-6. They represent the same information as thé charac-
teristic tables of Figs. 6-4(c) through 6-7(c).

Table 7-6 defines the state of each flip-flop as a function of its inputs
and previous state. Q(f) refers to the present state and Q(t + 1) to the
next state after the occurrence of a clock pulse. The characteristic table for
the RS flip-flop shows that the next state is equal to the present state

*A state table with binary assignment is sometimes called a transition table.
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Table 7-5 Reduced State Table with Binary Assignment 1

207

Next state Output
Present state x =0 =1 = x =1
001 001 010 0 0
010 011 100 0 0
011 001 100 0 0
100 101 100 0 1
101 001 100 0 1
Table 7-6 Flip-Flop Characteristic Tables
S R o+ 1) J K ot + 1)
0 0 o) 0 0 om
0 1 0 0 1 0
1 0 1 1 0 1
1 1 ? 1 1 Qo'
(a) RS (b) JK
D ot + 1) T ot + 1)
0 0 o)
1 1 Q1)
() D @r

when both inputs S and R are 0. When the R input is equal to 1, the next
clock pulse clears the flip-flop. When the S input is equal to 1, the next
clock pulse sets the flip-flop. The question mark for the next state when S
and R are both equal to 1 simultaneously designates an indeterminate next
state.

The table for the JK flip-flop is the same as that for the RS when J and
K are replaced by S and R, respectively, except for the indeterminate case.
When both J and K are equal to 1, the next state is equal to the
complement of the present state; ie., Q(t + 1) = Q'(f). The next state of
the D flip-flop is completely dependent on the input D and independent of
the present state. The next state of the T flip-flop is the same as the
present state if 7 = 0 and complemented if T = 1.

The characteristic table is useful for analysis and for defining the
operation of the flip-flop. It specifies the next state when the inputs and
present state are known. During the design process we usually know the
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transition from present state to next state and wish to find the flip-flop
input conditions that will cause the required transition. For this reason we
need a table that lists the required inputs for a given change of state. Such
a list is called an excitation table.

Table 7-7 lists the excitation tables for the four flip-flops. Each table
consists of two columns Q(f) and Q(¢z + 1) and a column for each input to
show how the required transition is achieved. There are four possible
transitions from present state to next state. The required input conditions
for each of the four transitions are derived from the information available in
the characteristic table. The symbol X in the tables represents a don’t-care
condition; that is, it does not matter whether the input is 1 or O.

RS Flip-flop

The excitation table for the RS flip-flop is shown in Table 7-7(a). The
first row shows the flip-flop in the O-state at time z. It is desired to leave it
in the O-state after the occurrence of the pulse. From the characteristic
table, we find that if S and R are both O, the flip-flop will not change
state. Therefore, both S and R inputs should be 0. However, it really
doesn’t matter if R is made a 1 when the pulse occurs since it results in
leaving the flip-flop in the O-state. Thus R can be 1 or 0 and the flip-flop
will remain in the O-state at ¢ + 1. Therefore, the entry under R is marked
by the don’t-care condition X.

If the flip-flop is in the O-state and it is desired to have it go to the
i-state, then from the characteristic table, we find that the only way to
make Q(f + 1) equal to 1 is to make S = 1 and R = 0. If the flip-flop is

Table 7-7 Flip-Flop Excitation Tables

o(1) o+ 1) s R ort) ot + 1) J K
0 0 0 X 0 0 0 X
0 1 1 0 0 1 1 X
1 0 0 1 1 0 X 1
1 1 X o 1 1 X o0

(@ RS ®) JK
oy on+ 1) D oy ot + 1) T
0 0 0 0 0 0
0 1 1 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

() D @7T
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to have a transition from the 1-state to the O-state, we must have S = 0
and R = 1. ‘

The last condition that may occur is for the flip-flop to be in the 1-state
and remain in the 1-state. Certainly R must be 0; we do not want to clear
the flip-flop. However, S may be either a 0 or a 1. If it is O, the flip-flop
does not change and remains in the 1-state; if it is a 1, it sets the flip-flop
to the 1-state as desired. Therefore S is listed as a don’t-care condition.

JK Flip-Flop

The excitation table for the JK flip-flop is shown in Table 7-7(b). When
both present and next state are O, the J input must remain at 0 and the K
input can be either a 0 or a 1. Similarly, when both present and next state
are 1, the K input must remain at O while the J input can be a 0 or a 1.
If the flip-flop is to have a transition from the O-state to the 1-state, J
must be equal to 1 since the J input sets-the flip-flop. However, input K
may be either a 0 or a 1. If K = 0, the J = 1 condition sets the flip-flop
as required; if K = 1 and J = 1, the flip-flop is complemented and goes
from the O-state to the l-state as required. Therefore the K input is marked
with a don’t-care condition for the O to 1 transition. For a transition from
the 1-state to the O-state, we must have K = 1 since the K input clears the
flip-flop. However, the J input may be either a 0 or a 1 since J = O has
no effect and J = 1 together with K = 1 complements the flip-flop with a
result transition from the I-state to the O-state.

The excitation table for the JK flip-flop illustrates the advantage of using
this type when designing sequential circuits. The fact that it has so many
don’t-care conditions indicates that the combinational circuit for the input
functions are likely to be simpler because don’tcare terms usually simplify
a function.

D Flip-flop

The excitation table for the D flip-flop is shown in Table 7-7(c). From
the characteristic table, Table 7-6(c), we note that the next state is always
equal to the D input and independent of the present state. Therefore, D
must be O if Q@ + 1) has to be 0 and 1 if Q( + 1) has to be 1,
regardless of the value of Q(r).

T Flip-Flop

The excitation table for the T flip-flop is shown in Table 7-7(d). From
the characteristic table, Table 7-6(d), we find that when input T = 1, the
state of the flip-flop is complemented; when T = 0O, the state of the
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flip-flop remains unchanged. Therefore, when the state of the flip-flop must
remain the same, the requirement is that 7 = 0. When the state of the
flip-flop has to be complemented, T must equal 1.

Other Flip-Flops

The design procedure to be described in this chapter can be used with
any flip-flop. It is necessary that the flip-flop characteristic table, from
which it is possible to develop a new excitation table, be known. The
excitation table is then used to determine the flip-flop input functions, as
explained in the next section.

74 DESIGN PROCEDURE

In this section we present a procedure for the design of sequential circuits.
Although intended to serve as a guide to the beginner, this procedure can
be shortened with experience. The procedure is first summarized by a list
of consecutive recommended steps as follows:

1. The word description of the circuit behavior is stated. This may be
accompanied by a state diagram, a timing diagram, or other pertinent
information.

2. From the given information about the circuit, obtain the state table.

3. The number of states may be reduced by state reduction methods if
the sequential circuit can be characterized by input-output relations
independent of the number of states.

4. Assign binary values to each state if the state table obtained in step 2
or 3 contains letter symbols.

5. Determine the number of flip-flops needed and assign a letter symbol
to each.

6. Choose the type of flip-flop to be used.
7. From the state table, derive the circuit excitation and output tables.

8. Using the map or any other simplification method, derive the circuit
output functions and the flip-flop input functions.

9. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the
reader is familiar with digital logic terminology. It is necessary that the
designer use his intuition and experience in order to arrive at the correct
interpretation of the circuit specifications because word descriptions may be
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incomplete and inexact. However, once such a specification has been set
down and the state table obtained, it is possible to make use of the formal
procedure to design the circuit.

The state reduction and state assignment problems have been discussed in
Sec.7-2. The effect of state assignment on the complexity of the
combinational circuit will be demonstrated subsequently in Exs. 7-1 and 7-2.

It has already been mentioned that the number of flip-flops is
determined from the number of states. A circuit may have unused binary
states if the total number of states is less than 2™. The unused states are
taken as don’t-care conditions during the design of the combinational circuit
part of the circuit.

The type of flipflop to be used may be included in the design
specifications or may depend on what is available to the designer. Many
digital systems are constructed entirely with JK flip-flops because they are
the most versatile available. When many types of flip-flops are available, it
is advisable to use the RS or D flip-flop for those applications requiring
transfer of date (such as shift-registers), the 7' type for applications involv-
ing complementation (such as binary counters), and the JK type for general
applications.

The external output information is specified in the output section of the
state table. From it we can derive the circuit output functions. The
excitation table for the circuit is similar to that of the individual flip-flops,
except that the input conditions are dictated by the information available in
the present state and next state columns of the state table. The method of
obtaining the excitation table and the simplified flip-flop input functions is
best illustrated by an example.

We wish to design the clocked sequential circuit whose state diagram is
given in Fig. 7-3. The type of flip-flops to be used are JK.

The state diagram consists of four states with binary values already
assigned. Since the directed lines are marked with a single binary digit

o

Figure 7-3 State diagram
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without a (/), we conclude that there is one input variable and no output
variables. (The state of the flip-flops may be considered the outputs of the
circuit.) The two flip-flops needed to represent the four states are
designated by 4 and B. The input variable is designated x.

The state table for this circuit, derived from the state diagram, is shown
in Table 7-8. Note that there is no output section for this circuit. We shall
now show the procedure for obtaining the excitation table and the
combinational gate structure.

The derivation of the excitation table is facilitated if we arrange the
state table in a different form. This form is shown in Table 7-9, where the
present state and input variables are arranged in the form of a truth table.
The next state value for each present state and input conditions is copied
from Table 7-8. The excitation table of a circuit is a list of flip-flop input

Table 7-8 State Table

Next state
Present state x =0 x =1

A B A B A B

0 0 0 . 0 0 1

0 1 1 0 0 1

1 0 1 0 1 1

1 1 1 1 0 0

Table 7-9 Excitation Table
Inputs of Outputs of
combinational circuit combinational circuit
Present
state Input Next state Flip-flop inputs

A B x A B JA KA JB KB
0 0 0 0 0 0 X 0 X
0 0 1 0 1 0 X 1 X
0 1 0 1 0 1 X X 1
0 1 1 0 1 0 X X 0
1 0 0 1 0 X 0 0 X
1 0 1 1 1 X 0 1 X
1 1 0 1 1 X 0 X 0
1 1 1 0 0 X 1 X 1
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conditions that will cause the required state transitions and is a function of
the type of flip-flop used. Since this example specified JK flip-flops, we
need columns for the J and K inputs of flip-flops A (denoted by JA and
KA) and B (denoted by JB and KB).

The excitation table for the JK flip-flop was derived in Table 7-7(b). This
table is now used to derive the excitation table of the circuit. For example, -
in the first row of Table 7-9 we have a transition for flip-flop 4 from 0 in
the present state to O in the next state. In Table 7-7(b) we find that a
transition of states from O to O requires that input J = 0 and input
K=X So 0 and X are copied in the first row under J4 and KA,
respectively. Since the first row also shows a transition for flip-flop B from
0 in the present state to O in the next state, 0 and X are copied in the
first row under JB and KB. The second row of Table 7-9 shows a transition
for flip-flop B from O in the present state to 1 in the next state. From
Table 7-7(b) we find that a transition from O to 1 requires that input
J =1 and input K = X. So 1 and X are copied in the second row under
JB and KB, respectively. This process is continued for each row of the
table and for each flip-flop; with the input conditions as specified in
Table 7-7(b) being copied into the proper row of the particular flip-flop
being considered.

Let us now pause and consider the information available in an excitation
table such as Table 7-9. We know that a sequential circuit consists of a
number of flip-flops and a combinational circuit. Figure 7-4 shows the two
JK flip-flops needed for the circuit and a box to represent the
combinational circuit. From the block diagram, it is clear that the outputs
of the combinational circuit go to flip-flop inputs and external outputs (if
specified). The inputs to the combinational circuit are the external inputs
and the present state values of the flip-flops. Moreover, the Boolean
functions that specify a combinational circuit are derived from a truth table
that shows the input-output relations of the circuit. The truth table that
describes the combinational circuit is available in the excitation table. The
combinational circuit inputs are specified under the present state and input
columns and the combinational circuit outputs are specified under the
flip-flop input columns. Thus, an excitation table transforms a state diagram
to the truth table needed for the design of the combinational circuit part
of the sequential circuit.

The simplified Boolean functions for the combinational circuit can now
be derived. The inputs are the variables A, B, and x; the outputs are the
variables J4, KA, JB, and KB. The information from the truth table is
transferred "into the maps of Fig.7-5, where the four simplified flip-flop
input functions are derived:

JA = Bx' KA = Bx
JB =x KB=40 x
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Figure 7-4 Block diagram of sequential circuit
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Figure 7-5 Maps for combinational circuit

The logic diagram is drawn in Fig. 7-6 and consists of two flip-flops, two
AND gates, one equivalence gate, and one inverter.

With some experience, it is possible to reduce the amount of work
involved in the design of the combinational circuit. For example, it is
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Figure 7-6 Logic diagram of sequential circuit

possible to obtain the information for the maps of Fig.7-5 directly from
Table 7-8, without having to derive Table 7-9. This is done by systematically
going through each present state and input combination in Table 7-8 and
comparing it with the binary values of the corresponding next state. The
required input conditions as specified by the flip-flop excitation in Table 7-7
is then determined. Instead of inserting the 0, 1, or X thus obtained into
the excitation table, it can be written down directly into the appropriate
square of the appropriate map.

The excitation table of a sequential circuit with m flip-flops, k inputs
per flip-flop, and n external inputs consists of m + n columns for the
present state and input variables and up to 2™*7 rows listed in some
convenient binary count. The next state section has m columns, one for
each flip-flop. The flip-flop input values are listed in mk columns, one for
each input of each flip-flop. If the circuit contains j outputs, the table must
include j columns. The truth table of the combinational circuit is taken
from the excitation table by considering the m + n present state and input
columns as inputs and the mk + j flipflop input values and external
outputs as outputs.

It is common practice to go from the Boolean functions expressed in
algebraic form to a wiring list that gives the interconnections among the
external terminals of flip-flops and gates in IC packages. In that case, the
design need not go any further than the required simplified circuit output
functions and flip-flop input functions. A logic diagram, however, may be
helpful for visualizing the implementation of the circuit with flip-flops and
gates.
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7-5 DESIGN EXAMPLES

The design of clocked sequential circuits is illustrated in this section by means of
seven examples. Examples 7-1 and 7-2 demonstrate the fact that different
binary assignments produce different combinational circuits. They also show
how unused binary states are treated as don’t-care conditions. Example 7-3
shows how to design with RS flip-flops. Example 7-4 shows how to design with
T and D flip-flops and how to treat unspecified next states. The design of a
circuit initially specified by a timing diagram is demonstrated in Ex. 7-5.
Circuits specified by state equations are designed in Exs. 7-6 and 7-7.

Design With Excitation Tables

EXAMPLE 7-1. Complete the design of the sequential circuit presented in
Sec. 7-2. Use the reduced state table (Table 7-3), with binary assignment 1 of
Table 7-4. Use JK flip-flops.

The state table with the required binary assignment is found in Table 7-5.
From this table, we obtain the entries for the present state, input, and next state
columns of Table 7-10. From the present and next state columns and from the
excitation requirements of a JK flip-flop, we deduce the conditions necessary to
excite the flip-flop inputs. The entries for the output column are obtained
directly from Table 7-5. Table 7-10 is the excitation table for the circuit. From
its information, we can derive the required combinational circuit.

There are three unused binary states in the state table: 000, 110, and 111.
When an input of O or 1 is included with each unused state, six unused
combinations result. These combinations have equivalent binary numbers 0, 1,
12, 13, 14, and 15 and are not listed in the table under the columns with labels
“present state” and “input.” These columns represent the input variables of the

Table 7-10 Excitation Table for Example 7-1

Present

state Input Next state Flip-flop inputs Output
A B C x| A B C|JA KA JB KB | JC KC y
0 0 1 0 0 0 1 0 X 0 X X 0 0
0 0 1 1 0 1 0 0 X 1 X X 1 0
0 1 0 o 0 1 1 0 X X 0 1 X 0
0 1 0 1 1 0 0 1 X X 1 0 X 0
0 1 1 0 0 0 1 0 X X 1 X 0 0
0 1 1 1 1 0 0 1 X X 1 X 1 0
1 0 0 o 1 0 1 X 0 0 X 1 X 0
1 0o 0 1 1 0O o0 X 0 0 X 0 X 1
1 0 1 0 0 0 1 X 1 0 X X 0 0
1 0 1 1 1 0 0 X 0 0 X X 1 1
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combinational circuit and therefore, the above numbers are treated as don’t-care
minterms.

The design of the combinational circuit consists of finding the six flip-flop
input functions and the circuit output function. These functions are taken from
the excitation table and simplified in the maps of Fig. 7-7. The four input
variables in each map are the three flip-flop variables A, B, and C and the input
variable x. Each map has X’s in the six squares that belong to the don’t-care
minterms. The other don’t-care terms in the maps are placed there because of
the characteristic property of JK flip-flops. The abundance of don’t-care terms
for the inputs of JK flip-flops, together with the six don’t-care terms from the

C

Cx —_———

AB_00 01 11 10

Od X| X X X 1
01 111 X1 X X |{X X I X]|X|] X
B
1] X XX X X X| X ||X X| X X
A
00 X | X[ X | X 1]
—
x
JA=Bx KA= Cx' JB=A'x
x x| x x| x| x|[x x|[x]1
1 11 1 1 X\l X XXt
X X||X|| X X[ X| XX XXX X
X XXX LJ X X X X1
KB=C+x JIC=x KC=x

y=Ax

Figure 7-7 Maps for simplifying combinational circuit of Example 7-1
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unused combinations, contribute a large amount of X’s to the maps and are the
main reason for the relatively simple expressions obtained:

JA = Bx K4 = Cx'
JB = A'x KB=C+x
JC = x' KC=x

y = Ax

The logic diagram for the circuit is drawn in Fig. 7-8. It consists of three
flip-flops, four AND gates, and one OR gate.

cpP
) | s "
0 1 0 0
K J K J K /
(-I i ﬁ | x’
C

x¥ B x C x A x A— ) y
X

Figure 7-8 Logic diagram for Example 7-1

EXAMPLE 7-2. Repeat Ex. 7-1 with binary assignment 2 of Table 7-4.

Table 7-11 is the excitation table for this example. The binary values for
the present state and next state are determined from the substitution of
assignment 2 of Table 7-4 into Table 7-3. Again there are six unused input
minterms. For this assignment, they are 2, 3, 8,9, 12, and 13. The simplification
of the six flip-flop input functions and the circuit output function should
include these don’t-care terms. The map simplifications are not shown, but the
reader can easily verify the following results (see Prob. 7-16):

JA = Bx KA = Bx'
JB=Cx'"+Cx KB=C+x
JC =B KC = Bx'
y = Ax

The logic diagram for the circuit is drawn in Fig. 7-9. It consists of three
flip-flops, six AND gates and two OR gates.
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Table 7-11 Excitation Table for Example 7-2

Present

State Input Next state Flip-flop inputs Output
A B C x| A B C|JA KA JB KB | JC KC y
0 o 0 O 0 0 0 0 X 0 X 0 X 0
0 0 0 1 0 1 0 0 X 1 X 0 X 0
0 1 0 0 0 1 1 0 X X 0 1 X 0
0 1 0 1 1 0 1 1 X X 1 1 X 0
0 1 1 0 0 0 o 0 X X 1 X 1 0
0 1 1 1 1 0 1 1 X X 1 X 0 0
1 0 1 0 1 1 1 X 0 1 X X 0 0
1 0 1 1 1 0 1 X 0 0 X X 0 1

1 1 1 0 0 0o o0 X 1 X 1 X 1 0
1 1 1 1 1 0 1 X 0 X 1 X 0 1

v CP
T :
0 1 0 1 0 1
J K J J
B
B x¥ B x C x B x
A—
D—
cCx Cx

Figure 79 Logic diagram of Example 7-2

Examples 7-1 and 7-2 demonstrate how a different combinational circuit
is obtained for the same circuit when a different binary assignment is made.
The circuits of Figs. 7-8 and 7-9 are identical as far as the specifications
given by Table 7-3 are concerned. The choice of binary states for the letter
symbols dictates the complexity of the combinational circuit obtained.

EXAMPLE 7-3. Design a sequential circuit whose state diagram is the
solution of Prob. 6-9 and is given by Fig. 7-10. Use RS flip-flops.
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11/0

00/0 01/0

01/1 ° 0 10/0

10/1 ‘ ) 11/1
00/1

Figure 7-10 State diagram for Example 7-3

The state diagram consists of two states, with binary values already
assigned. The directed lines are marked with two inputs and one output.
Three of the input combinations leave the circuit in the same state. Only
inputs 00 and 11 cause a transition of states.

The excitation table for the circuit is shown in Table 7-12. The present
state, input, next state, and output columns are derived directly from the
state diagram of Fig. 7-10. The flip-flop input conditions are obtained from
the state transition and from the excitation requirements of an RS flip-flop
as listed in Table 7-7(a). The flip-flop output is denoted by A, the inputs
by x and y, and the output by z.

The simplified Boolean functions for the combinational circuit are
derived from the maps of Fig. 7-11. The entries for the map are obtained
from Table 7-12. The simplified flip-flop input functions and the output
functions are:

S4 = xy
RA =Xy
z=x0y o4
Table 7-12 Excitation Table for Example 7-3

PS inputs NS Output FF inputs
A x y A z SA RA
0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 1 0 b ¢
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0
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xy —_—
4,00 01 11 10
0 1 X| X X 1 1
A{l X1 X X 1 1 1
y
SA = xy RA=Xx"y z= A®x®y

Figure 7-11 Maps for Example 7-3

The logic diagram of the circuit is shown in Fig. 7-12.

EXAMPLE 7-4. Design a sequential circuit with two flip-flops and one
input. When the input is equal to 1, the flip-flop outputs repeat the
sequence 00, Ol, 10. When the input is equal to O, they repeat the
sequence 11, 10, Ol. Design the circuit with: (a) T flip-flops and (b)D
flip-flops.

The state diagram, derived from the word description, is shown in
Fig. 7-13(a). Each sequence is repeated as long as the input remains the
same. The statement of the problem does not specify the next state when
the input changes while the circuit is in state 00 or 11. The state table of
Fig. 7-13(b) is derived from the state diagram. The two dashes in the table
designate the fact that the next states are not specified for these conditions.
The question now arises, how do we treat these unspecified next states? In
a practical situation, the designer would go back to the source of the
statement of the problem and ask for further clarification. If this is
impossible, the designer must decide for himself what to do. One possible
alternative is to leave the circuit in state 00 or 11 when the input is O or
1, respectively. A second alternative is to force a transition to either state
01 or 10 so the proper sequence may continue. A third alternative is to

Xy
—l>j |cr
DD _—\, ‘ R 0

) )} s 1 A

Figure 7-12 Logic diagram for Example 7-3
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assume that it does not matter what the next state is going to be. We shall
arbitrarily assume the third alternative.

The excitation table is shown in Table 7-13. The two unspecified next
states are marked by X’s and treated as don’t-care conditions. The flip-flop
input values are listed for the T type and the D type. The input of the T
flip-flop must be a 1 if there is a change from O to 1 or from 1 to O
during the state transition. It is equal to O if there is no change of state
from the present state to the next state. The input for the D flip-flop is
exactly the same as the entry in the next state column. The flip-flop
excitation tables from Table7-7 may be consulted to verify these
conditions.

The maps of Fig. 7-14(a) are used if the circuit is to have T flip-flops.
The simplified input functions are:

TA = A o B
TB =4 & x

Present| Next state
state x=0}f x=1
A B|A B|A B
0 0]- -|0 1
0 1{1 1|1 0
0 1 0/]0 1|0 O
1 141 0}—- -
0
(a) (b)
Figure 7-13 State diagram and state table for Example 7-4
Table 7-13 Excitation Table for Example 7-4
Flip- I
Present Next ip:flop Inputs
State Input State T Type D Type
A B x A B TA B DA DB
0 0 0 X X X X X X
0 0 1 0 1 0 1 0 1
0 1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1 0
1 0 0 0 1 1 1 0 1
1 0 1 0 0 1 0 0 0
1 1 0 1 0 0 1 1 0
1 1 1 X X X X X X
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Bx B
4,00 01 11 10
ol x 1 1 X| 1|1
A{l 1 1| X 1 X ]1
——
TA:;GBB TB=A®x

(a) When T flip-flops are used

X 1 1 X 1 1
X |1 1 X
DA=B DB= A'x'+ A'B'+B'x’

(b) When D flip-flops are used

Figure 7-14 Maps for Example 7-4

The maps of Fig. 7-14(b) are used if the circuit is to have D flip-flops.
The input functions obtained are:

DA =B
DB =A'x' + A'B' + B'X
It is interesting to check the assignment given to the unspecified next
states. From the maps of Fig. 7-14(a) we note that, for the circuit with T

flip-flops, the X°s are included with the 0’s. This means that no change of
state occurs; the circuit stays in state 00 or 11 when the input is O or 1,
respectively. For the circuit with D flip-flops, we have chosen 01 to be the
next state from present state 00 with x = 0 and 10 to be the next state from
present state 11 with x = 1.

EXAMPLE 7-5. Design a circuit with one flip-flop and two inputs to
conform with the timing diagram of Fig. 7-15. Flip-flop Q is set when 4 = 1
and B = 0; it is cleared when 4 = 1 and B = 1 and is left in the same state
otherwise.

The reader should immediately realize that this is a simple sequential
circuit with functions AB’' and AB, respectively, needed to set and clear the
flip-flop. The type appropriate for these functions is either an RS or JK
flip-flop. The flip-flop input functions for an RS type are:

SQ = AB'
RQ = AB

Now, let us assume that the solution was not immediately apparent and

proceed to determine the flip-flop input functions by means of an excitation
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S I N | | I A I B
] n
B | L
o | |

Figure 7-15 Timing diagram for Example 7-5

table. The next state of Q in Table 7-14 has to be a 1 when the inputs
AB = 10 and a 0 when AB = 11, irrespective of the present state of Q. For
the four remaining combinations, the next state of Q must remain the same as
its present state. From the RS flip-flop input values, we obtain the maps of
Fig. 7-16. The simplified input functions from the maps are as predicted.

Design With State Equations

EXAMPLE 7-6. Design a sequential circuit that behaves according to the
following state equations:

A(t+1)=CD +C'D

B(t+1) =4
ar+1) =8B
Dit+1)=C

From the four given state equations, we conclude that there are four
flip-flops in the circuit denoted by 4, B, C, and D and that there are no
external inputs or outputs since none are specified. The specified circuit is a
shift-register with the input into 4 being dependent on the present state of C
and D. Such a circuit is called a feedback shift-register. In a feedback
shift-register, each flip-flop shifts its content to the next flip-flop when a
clock pulse occurs and, at the same time, the states of certain flip-flops
determine the next state of the first flip-flop. The most convenient flip-flops
to use are the D type.

As shown in Sec. 6-4, the state equations represent the same information
as a state table. It is possible to obtain the state table and flip-flop
excitation requirements for this circuit but, when D flip-flops are used, it
will be a complete waste of time. This is because the entries for the
flip-flop inputs are exactly the same as the next state and the conditions
for the next state are already listed in the specifications. Therefore, the
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Table 7-14 Excitation Table for Example 7-5

PS  Inputs NS FF Inputs
Q 4 B o SQ RQ
0 0 0 0 0 X
0 0 1 0 0 X
0 1 0 1 1 0
0 1 1 0 0 X
1 0 0 1 X 0
1 0 1 1 X 0
1 1 0 1 X 0
1 1 1 0 0 1
A
AB
Q0 _00 o1 11 10
0 1 X X| X
Q{l X | X X 1
N
B
SQ = AP’ RQ = AB

Figure 7-16 Maps for Example 7-5

flip-flop input functions for this circuit are taken directly from the
specifications, with the next state symbol replaced by the flip-flop input
variable as follows:

DA =CD' +C'D

DB =4
DC =B
DD =C

EXAMPLE 7-7. Design a sequential circuit with JK flip-flops to satisfy
the following state equations:

A(t + 1) = A'B'CD + A'B'C + ACD + AC'D'
B(t+1)=A'C+CD' + A'BC’
C(t+1)=8B

Dit+ 1) =D

The combinational circuit can be found directly from the state equations
without having to draw the state table or excitation table. This is



226 DESIGN OF CLOCKED SEQUENTIAL CIRCUITS Chap. 7

accomplished by means of a matching process between the state equation
and the characteristic equation of the JK flip-flop. The characteristic
equation of the JK flip-flop in terms of an output variable Q was derived
in Fig. 6-6(d) and is repeated here:

ot + 1) =Y + (KHQ

Input variables J and K' are enclosed in parentheses so as not to confuse
the AND terms in the characteristic equation with the two-letter convention
which has been used to represent a flip-flop input variable.

The matching process consists of arranging and manipulating the state
equation until it is in the form of the characteristic equation. Once this is
done, the functions for J and K can be extracted and simplified.

The input functions for flip-flop A are derived by this method by
arranging the state equation and matching it with the characteristic equation
as follows:

A(t+ 1) =(B'CD +B'C)A' + (CD + C'DHA
=4 + (K4

From the equality of the two equations, we deduce the input functions for
flip-flop A to be:

J=B'CD +B'C=BC
K=(D+CDY=CD"+CD

The state equation for flip-flop B can be arranged as follows:
B(r+ 1) =@AC+CD')+ A'CHB

However, this form is not suitable for matching with the characteristic
equation because the variable B’ is missing. If the first quantity in
parentheses is ANDed with (B’ + B), the equation remains the same but
with the variable B’ included. Thus,

B(t+1)=MA'C+CcD)YB +B)+ UA'CHB
=('C+CD")B' +(A'C+CD' + A'C")B
=(/)B' + (K')B
From the equality of the two equations, we deduce the input functions for
flip-flop B:
J=A'C+ D’
K=(A'C+(CD' +A4'C"Y = AC' + AD
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The state equation for flip-flop C can be manipulated as follows:

C(t+1)=B=B(C" +C)=BC"+BC

= J)C' + (K')C
The input functions for flip-flop C are:
J=B
K =B

Finally, the state equation for flip-flop D may be manipulated for the
purpose of matching as follows:

Dt +1)=D'=1.D"+0.D
=)D + (KD
which gives the input function:
J=K=1

The derived input functions can be accumulated and listed together. The
two-letter convention to designate the flip-flop input variable, not used in
the above derivation, is used below:

JA = B'C KA =CD' +CD
JB=A'C+CD' KB = AC + AD'
JC =B KC =B’
JD =1 KD =1

The design procedure introduced in Exs. 7-6 and 7-7 is an alternative
method for determining the flip-flop input functions of a sequential circuit
when D or JK flip-flops are used. To use this procedure when a state
diagram or a state table is initially specified, it is necessary that the state
equations be derived by the procedure outlined in Sec.6-4. The state
equation method for determining flip-flop input functions must be modified
somewhat if the circuit has unused binary states which are considered as
don’t-care conditions (see Prob. 7-10). The application of this procedure to
circuits with RS and T flip-flops is possible but involves a considerable
amount of algebraic manipulation (see Prob. 7-11).

7-6 DESIGN OF COUNTERS

State transitions in clocked sequential circuits occur during a clock pulse;
the circuit is assumed to remain in its present state if no pulse occurs. For
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this reason, the clock pulse does not appear explicitly as an input variable
in a state table. From this point of view, a counter may be regarded as a
sequential circuit with no input variables, since the only input is the count
pulse. The next state of a counter depends entirely on its present state and
the state transition occurs every time a pulse occurs. Because of this
property, a counter can be completely specified by a list of the count
sequence; that is, the sequence of binary states that it undergoes.

Consider for example a BCD counter whose count sequence is listed in
the first column of Table 7-15. The next number in the sequence represents
the next state reached by the circuit upon the application of a count pulse.
The count is assumed to repeat itself in such a way that state 0000 is the
next state after 1001. The count sequence gives all the information needed
to construct the state table. However, it is unnecessary to list the next
states in a separate column because they can be read from the next number
in the sequence. The design of the combinational circuit part of a counter
follows the same procedure as that outlined in Sec. 7-4, except that the
excitation table can be obtained directly from the count sequence. We shall
illustrate this procedure by designing a BCD counter with T flip-flops.

Table 7-15 is the excitation table for the BCD counter. The entries for
the flip-flop input conditions are determined from the characteristics of a T
flip-flop and by inspecting the state transition from a given count to the
next below it. For example, the row with count 0101 is compared with
0110, the next count below it. The bits for flip-flops Qs and Q, do not
undergo a change, so 7Qs and TQ, in row 0101 are marked with a 0.
Flip-flop Q, changes from O to 1 and Q; changes from 1 to 0, and, since
both have to be complemented to reach the next count, it is necessary that
their T inputs be a 1. Therefore, TQ, and TQ, in row 0101 are marked
with a 1. The last row with count 1001 is compared with count 0000 of
the first row to obtain the entries for the flip-flop inputs in the last row.

Table 7-15 Excitation Table for BCD Counter

Count sequence Flip-flop inputs
Os Qs Q2 O TQs TQ4 TQ, 70,4
0 0 0 Y 0 0 0 1
0 0 0 1 0 0 1 1
0 0 1 0 0 0 0 1
0 0 1 1 0 1 1 1
0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 1
0 1 1 0 0 0 0 1
0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 1
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The flip-flop input functions from the excitation table are simplified in the
maps of Fig. 7-17. The six X’s in each map represent the don’t-care conditions
from the six unused states. The simplified flip-flop input functions are:

T0, =1
TQ; = Q30:
704 =020,

TQs = Q301 + 04020y
The circuit requires four T flip-flops, four AND gates, and one OR gate.

Counter-Decoder Circuits

Counters, together with decoders, are used to generate timing and sequencing
signals that control the operations of digital systems. Figure 7-18 shows a simple
configuration for generating timing signals. It consists of a counter with m
flip-flops that goes through a sequence of up to 2 states. The outputs of the
flip-flops go into a decoder (Sec. 4-8) that has up to 2™ outputs. As the count
sequence progresses from 1 to n, decoder outputs £, to ¢, become logic-1 in
consecutive order. These outputs can be used as command signals to perform a

2
r————
00 01 11 10
00 1
01 1 1
N
1 X | X X X | X
Qs
10 1 X X
2, TQ,= 02,0,
TQy = Qng + Q4Q2Q1
1 1 1 1 1 1
1 1 1 1 1 1
X | X X| X
X| X 1 1
TQ,= Q30Q, TQ, =1

Figure 7-17 Maps for BCD counter
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Decoder
Fy, 'FT ______ 'Fl’ F,
Clock Sequence counter
pulses (m flip-flops)

Figure 7-18 Block diagram of counter-decoder

sequence of operations in a digital system.

A counter-decoder circuit can be designed to give any desired number of
repeated timing sequence. Consider for example the sequence of six timing
signals shown in Fig. 7-19. To generate the six outputs #; to #;, we need a
counter that goes through a repeated sequence of six states and a decoder
whose output #; becomes logic-1 when the counter is in the corresponding

state k for k = 1, 2, ..., 6. We shall now proceed to design two counter-
decoder circuits capable of generating the six timing signals shown in
Fig. 7-19.

Three flip-flops produce up to eight binary states. To generate six timing

PR | S | S | I | | N A | B | I
o 1L
p— I
1

13
t4 l I
15 L

1 I

Figure 7-19 Sequence of 6 timing signals
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signals, we need a counter that goes through a sequence of six states. It
does not matter which six states are chosen or in what sequence they are
ordered; the outputs of the circuit are taken from the decoder which can
be designed to decode any combination of six states. We are confronted
here with the state assignment problem; that is, we have to choose a
sequence of six states in such a manner as to minimize the number of gates
in the combinational circuit part of the counter and in the decoder. Two
assignments will be chosen out of the many possible; the first is a straight
binary assignment and the second is an assignment derived to produce a
counter without the need of gates. We shall employ JK flip-flops since they
are the most versatile for this application.

Table 7-16 is the excitation table for a count-by-6 counter with the
count sequence chosen to be a straight binary count from 000 to 101. The
two unused states, 110 and 111, are taken as don’t-care terms. The
simplified flip-flop input functions are easily derived to be:

JA = BC KA =C
JB =A'C KB =C
JC =1 KC=1

The Boolean functions for the decoder are simplified somewhat when the
unused states are taken as don’t-care terms:

t, = A'B'C’ ts = BC
t, =A'B'C ts = AC'
t; = BC' te = AC

The logic diagram for the circuit is drawn in Fig. 7-20. It requires three
flip-flops and eight AND gates.

A second possible assignment of six states is shown in Table 7-17. In
this assignment, the sequence for flip-flops B and C is a repetition of the
binary count 00, 01, 10, while flip-flop 4 is chosen to alternate between 0

Table 7-16 Excitation Table for First Count-by-6 Counter

Count sequence Flip-flop inputs

A B C JA KA JB KB JC KC
0 0 0 0 X 0 X 1 X
0 0 1 0 X 1 X X 1
0 1 0 0 X X 0 1 X
0 1 1 1 X X 1 X 1
1 0 0 X 0 0 X 1 X
1 0 1 X 1 0 X X 1
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te 1 ts 13 ty t

1 CP
4 | 5 1 o 1
1 J _C 1 J _( T J
i—‘
0 K 0 K Ho K
logic-1
Figure 7-20 Count-by-6 circuit with straight binary count
Table 7-17 Excitation Table for Second Count-by-6 Counter
Count sequence Flip-flop inputs
A B C JA KA JB KB JC KC
0 0 0 0 X 0 X 1 X
0 0 1 0 X 1 X X 1
0 1 0 1 X X 1 0 X
1 0 0 X 0 0 X 1 X
1 0 1 X 0 1 X X 1
1 1 0 X 1 X 1 0 X

and 1 every three counts. The unused states for this count are 011 and
111. The simplified functions for this circuit are:

JA =B KA =B

JB =C KB =1

JC =58 KC=1

t, =A'B'C’ t, = AB'C’
t, = A'C ts = AC

t; = A'B te = AB
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The logic diagram is drawn in Fig. 7-21. The counter does not require any gates,
the decoder requires six AND gates. The circuits of Figs. 7-20 and 7-21 perform
identical operations and produce identical timing sequences, as specified in
Fig. 7-19, yet the one in Fig. 7-21 requires two less gates.

" tg N t 1$) h
l
+ CP
A r B C L
1 7 _l 1 J 1 Jp
—10 K 0 X —0 K
logic-1

Figure 7-21 Second form of a count-by-6 counter

PROBLEMS

7-1. Reduce the number of states in the following state table and tabulate
the reduced state table.

Present Next state Output

state x =0 x =1 x=0 x =1
a f b 0 0
b d €x 0 0
£ f &b 0 0
d g a 1 0
_€ d PHEN 0 0
f f b 1 1
4 g & 0 1
H g a 1 0
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7-3.

7-4.

7-6.

7-7.

7-8.

7-9.

7-10.

7-11.

DESIGN OF CLOCKED SEQUENTIAL CIRCUITS Chap. 7

Starting from state ¢ of the state table in Prob. 7-1, find the output
sequence generated with an input sequence 01110010011,

Repeat Prob. 7-2 using the reduced table of Prob. 7-1. Show that the
same output sequence is obtained.

Substitute binary assignment 2 of Table 7-4 to the states in Table 7-3
and obtain the binary state table. Repeat with binary assignment 3.

Obtain the excitation table of the JK' flip-flop described in Prob. 6-5.

Obtain the excitation table of the set-dominate flip-flop described in
Prob. 6-6.

Obtain the characteristic table and excitation table of an RST flip-
flop. This is a three-input flip-flop with both RS and T capabilities.
Only one input can be excited at one time.

A sequential circuit has one input and one output. The state diagram
is as shown. Design the sequential circuit with (a) T flip-flops, (b) RS
flip-flops, and (¢) JK flip-flops.

0/0

Design the circuit of a four-bit register that converts the binary
number stored in the register to its 2’s complement value when input
x = 1. The flipflops of the register are of the RST type. This
flip-flop has three inputs: two inputs have RS capabilities and one has
a T capability. The RS inputs are used to transfer the four-bit
number when an input y = 1. Use the T input for the conversion.

(a) Derive the state equations for the sequential circuit specified by
Table 7-5, Sec. 7-2. List the don’t-care terms. (b) Derive the flip-flop
input functions from the state equations (and don’t-care terms) using
the method outlined in Ex. 7-7. Check your answers with the
solution given in Ex. 7-1.

The state equation method for determining flip-flop input functions as
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outlined in Exs. 7-6 and 7-7 can be extended to circuits with T or RS
flip-flops. Chapter 5 of the book by Phister (8) shows that the
following relations hold:

type of characteristic state flip-flop function
flip-flop equation equation fromg, and g, condition
T o+ 10’ 80 +80 T=g, ifg, =&,
T=g0+g,0 none
RS S+R'Q 80 + 80 S=g,, R=g] ifgig, =0
S=£0,R=g,0 | ifgig, ¥ 0

Repeat Exs. 7-3 and 7-4 using the above table.

7-12. Using only T flip-flops, design a shift-register that shifts both right and left.

7-13. Derive the state diagram for the circuit of Ex. 7-6.
7-14. Repeat Ex. 7-1 with binary assignment 3 of Table 7-4.

7-15. Verify the circuit obtained in Ex. 7-7 by using the excitation table
method.

7-16. Verify the flip-flop input functions obtained for Ex. 7-2.
7-17. Repeat Ex. 7-4 using RS flip-flops.
7-18. Repeat Ex. 7-7 using D flip-flops.

7-19. Design the sequential circuit described by

equations. Use JK flip-flops.

7-20. Design a synchronous BCD counter with JK flip-flops.

A(t + 1) = xAB + yA'C + xy
B(t + 1) = xAC + y'AB'
c(t + 1) = x'B + yAB'

the

following

7-21. Design a decimal counter using the 2,4,2,1 code and T flip-flops.

state

7-22. Design a counter-decoder circuit that recycles every 12 input pulses.
The decoder has four outputs to detect the occurrence of the 3rd,
6th, 9th, and 12th input pulse, respectively. Use T flip-flops. Also
draw the timing diagram for the four decoder outputs.

7-23. Design the following counter-decoders using JK flip-flops: (a) count-
by-3; (b) count-by-5; (c) count-by-7; (d) count-by-8.

7-24. Design a counter with the following binary sequence: 0, 1, 3, 2, 6, 4,

5,7

and repeat. Use RS flip-flops.

7-25. Design a counter with the following binary sequence: 0, 1, 3, 7, 6, 4
and repeat. Use T flip-flops.

7-26. Design a counter with the following binary sequence: 0, 4, 2, 1, 6
and repeat. Use JK flip-flops.
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OPERATIONAL AND
8 STORAGE REGISTERS

8-1 REGISTER TRANSFER

A digital system is a sequential logic system which can be constructed with
memory elements and combinational gates. As long as the number ‘of
flip-flops and inputs is small, the circuit can be designed by means of state
tables and excitation tables. A large system, such as a digital computer,
would be difficult, if not impossible, to define by a single state table. To
overcome this difficulty, large systems are invariably designed using a
modular approach. The system is partitioned into a number of standard
modules, each of which performs some functional task. A computer proces-
sor unit for example, is designed using modules such as registers, decoders,
arithmetic circuits, and control circuits. The modules are in turn constructed
with submodules until one arrives at a circuit with a small number of
elements which can be designed by means of excitation tables or equivalent
procedures. With such an approach, each module is separately designed and
tested. The various modules are then interconnected with common data-
transfer and control-signal paths to form a processor unit.

The standard module used for storing binary information is the register.
A register was defined in Sec. 1-7 as a group of binary cells. A group of
flip-flops constitutes a register since a flip-flop is a binary cell capable of
storing one bit of information. In addition to the flip-flops, a register may
have combinational gates that perform certain data processing tasks. In its
broadest definition, a register consists of a group of flip-flops and the gates
that affect their transition. The flip-flops hold the binary information while
the combinational gates process it. The shift-register is an example of a

237
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register whose data processing task is the transfer of information. A counter
may be considered a register whose function is to count the number of
incoming pulses.

Data transfer among modules and units is accomplished by means of
inter-register transfer operations. These operations consist of a direct transfer
of binary information from one register to another. The destination register
that receives the information assumes the previous value of the source
register. The value of the source register normally does not change because
of the transfer.

Information transfer from one register to another can be performed in
either series or parallel. In series transfer, both the source and destination
registers are shift-registers. The information is transferred one bit at a time
by shifting the bits out of the source register into the destination register.
In order not to lose the information stored in the source register, it is
necessary that the information shifted out of the source register be recircu-
lated and shifted back at the same time. Parallel transfer consists of a
simultaneous transfer of all the bits from the source register to the destina-
tion register. Parallel transfer is done during one clock pulse, while serial
transfer needs a number of clock pulses equal to the number of bits
transferred.

Figure 8-1 shows a parallel transfer of binary information from an n-bit
source register to four destination registers. Each register is represented by a
box and contains n D-type flip-flops. Each flip-flop in a destination register
uses an AND gate with two inputs. One input contains the corresponding
information bit and the other is a control signal. The four control signals
determine which register receives the information. For example, when con-
trol line A4 is logic-1 (while control lines B, C, and D are logic-0) and a
clock pulse occurs, register A receives the information from the source
register. The information in the other three registers and the source register
remains the same.

In a system with many registers, the transfer from each register to
another requires that lines be connected from the output of each flip-flop
in one register to the input of each flip-flop in all the other registers.
Consider for example the requirement for transfer among three registers as
shown in Fig. 82. There are six data paths between registers. If each
register consists of n flip-flops, there is a need for 6n lines. As the number
of registers increases, the number of lines increases considerably. However, if
we restrict the transmission of data among registers to one at a time, the
number of paths among all registers can be reduced to just one per flip-flop
for a total of n lines. This is shown in Fig. 8-3, where the output and
input of each flip-flop is connected to a common line through an electronic
circuit that acts like a switch. All the switches are normally open until a
transfer is required. For a transfer from F, to F,, for example, switches S
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Figure 8-1 Transfer of information in parallel from one source to four
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Figure 8-2 Transfer among three registers

and S, are closed to form the required path. This scheme can be extended
to registers with n flip-flops and requires n common lines, since each
flip-flop of the register must be connected to one common line.

A group of wires through which binary information is transferred one at
a time among registers is called a bus. For a parallel transfer, the number



240 OPERATIONAL AND STORAGE REGISTER Chap. 8
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Figure 8-3 Transfer through one common line

of wires in the bus is equal to the number of flip-flops in the register. The
idea of a bus transfer is analogous to a central transportation system used
to bring commuters from one point to another. Instead of each commuter
using his own private car to go from one location to another, a bus system
is used with each commuter waiting in line until transportation is available.

Figure 84 shows one possible implementation of inter-register transfer
through a bus. Three registers, each with n flip-flops, are connected to the
bus lines through circuits labeled BD (Bus Driver). The output of each
flip-flop goes to one input of a BD circuit and the other input of the BD
is connected to a control signal. The two inputs in each BD produce a logic
AND operation. The outputs of the BD have a wired-OR function
(Sec. 5-7); that is, their connection to a common wire produces a logic OR
operation. For a transfer from register Rl to register R3, for example,
control signals §; and S; become logic-1. This connects the flip-flops from
register R1 to the bus lines and at the same time enables the AND gates in
R3 to accept the information from the bus lines. A clock pulse to all
flip-flops results in the transfer of the binary information from Rl to R3,
while the information in R1 and R2 remains the same.

Transfer through a bus is limited to one transmission at a time. If two
transfers are required at the same time, two buses must be used. A large
digital system will normally employ a number of buses with each of its
registers connected to one or more buses to form the various paths needed
for the transfer of information.

A bus system may be formed with multiplexer and demultiplexer circuits
(Sec. 4-9). A multiplexer circuit selects data from many lines and directs it
to a single output line. A demultiplexer circuit receives information from
one line and distributes it over a large number of destinations. Thus,
multiplexers can function as BD circuits and demultiplexers as the input
gating circuits. The selection of the registers is done by the selection lines
of the two circuits. The multiplexer selection lines determine the source
register and the demultiplexer selection lines determine the destination
register.
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Figure 84 Transfer through a bus

8-2 REGISTER OPERATIONS

An elementary operation is an operation performed during one clock pulse
on the information stored in a register. The result of the operation may
replace the previous binary information of the register or may be trans-
ferred to another register. An inter-register transfer is an elementary
operation. Other examples are shift, count, add, and clear. Since an
elementary operation is completed during one clock pulse, it is sometimes
called a micro-operation. It is the most basic operation that exists in a
digital system.

A register capable of performing elementary operations is an operational
register. As shown in Fig. 8-5, an operational register consists of a group of
flip-flops and a combinational circuit that performs the required operations.
All processor registers, including shift-registers and those involved with
parallel transfers, are classified as operational registers. For this reason, when
dealing with register operations we shall refer to an operational register as a
register; that is, the word register will include the group of flip-flops and its
associated combinational circuit.

The following chapters will show that all data processing performed in
digital systems is implemented through a sequence of elementary operations
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Figure 8-5 Block diagram of an operational register

performed on data stored in registers. The purpose of this section is to
introduce a symbolic notation to describe register transfers and elementary
operations in a concise and precise manner. From a list of register opera-
tions, it is then possible to obtain the Boolean functions for the system.

The register transfer symbols are defined in Table 8-1. Registers are
denoted by capital letters and the individual flip-flops of the register by the
letter designation with a subscript. Thus, 4 denotes a register; 4, denotes
flip-flop 3 of register A. The subscript number of each flip-flop must be
part of the definition of a register. In this book we shall adopt the
convention of numbering the flip-flops of a register in ascending order
starting from the right-most position., However, any other convenient num-
bering of the flip-flops is possible. Figure 8-6 shows a block diagram of an
eight-bit register denoted by A. The individual flip-flops (together with their
associated combinational gates) are numbered from right to left with sub-
scripts 1 through 8.

Table 8-1 Register transfer symbolic notation

Symbol Description

capital letter denotes a register

subscript denotes a flip-flop in a register

parentheses ( ) denotes contents of a register

double line arrow = denotes transfer of information

brackets [ ] denotes a portion of a register (see Sec. 10-2)

brackets < > denotes a memory register specified by an address
(see Sec. 8-3)

plus + denotes arithmetic addition

minus - denotes subtraction

disjunction V denotes logical OR operation (see Sec. 9-6)

conjunction A denotes logical AND operation (see Sec. 9-6)

exclusive-or @ denotes exclusive-or operation (see Sec. 9-6)

bar - denotes complementation

equality = denotes equality

colon : denotes termination of a Boolean control function

comma , separates two elementary operations which are per-
formed simultaneously during one clock pulse
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Ag | 4, | A | 45 | Aq | 45 | 4, | 4,

Figure 8-6 Block diagram of an 8-bit register denoted by the letter
symbol A4

Parentheses denote the contents of a register or flip-flop. Thus (4)
signifies the contents of register 4 and (4;) means the contents of the ith
flip-flop of register 4. The double line arrow denotes the transfer of
information between registers. Thus,

4) = B

represents a symbolic notation for the parallel transfer of the contents of
register A into register B. We shall assume that the contents of register 4
are not changed during the transfer unless otherwise noted.

The serial transfer of information from register A to register B is done
with shift-registers as shown in the block diagram of Fig. 8-7. The right-
most flip-flop of register 4 is labeled 4; and the left-most flip-flops of
registers A and B are labeled A, and B,, respectively. When the shift-right
command signal Sy is logic-1 and a clock pulse occurs, the contents of
registers A and B are shifted once to the right and the value of A, is
transferred to flip-flops B, and A4, This causes the transfer of one bit of
information from register A to B and at the same time one bit is recir-
culated back to register A. This transfer can be expressed by means of
symbolic notation as follows:

SR: (Al) :Bn’ (Al) =An9 (Al + 1)= Ai’ (Bl + 1) :Bj
i=1,2,3,...,n-1

The control function Sy is terminated by a colon and designates a Boolean
condition; i.e., the register operations listed after the colon are performed
only if Sg = 1. The elementary operations are separated by a comma and
are performed simultaneously during one clock pulse. The subscript i
denotes the individual flip-flops of the register. Note that an elementary
operation, by definition, is completed during one clock pulse and therefore,

(Shift right)

SR
I 4, t_ ‘
Shift register A Shift register B

An Bn

Figure 8-7 Serial transfer by shift registers
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the above symbolic statement designates a transfer of only one bit. For a
complete transfer of all n bits, the command signal S must remain a 1 for
a period of n clock pulses. Other examples of elementary operations are
listed in Table 8-2 for reference.

A sequence of elementary operations are usually conditioned by control
functions. The operations are assumed to follow the listed sequence when
the control functions are not included. For example,

t:(A)=>A4,0=8B
Faty: (A) + (B) = A

means that when Boolean variable ¢, is logic-1, register A4 is complemented
and register B is cleared. When Boolean function F,t, = 1, the contents of
registers 4 and B are added and the sum is transferred to register A.

On the other hand, the following sequence:

B=C,B)=T
©+1=>C,(D-1=>T

does not include control functions and therefore denotes a sequence of four
elementary operations performed during two clock pulses. During the first
clock pulse, the two elementary operations listed in the first line (separated
by a comma) are executed: the contents of register B are transferred to
register C and to register 7. During the next clock pulse, the two elemen-
tary operations listed in the second line are executed: the content of
register C is increased by unity and that of register T is decreased by unity.

In Ch. 9 we demonstrate the procedure for obtaining the Boolean
functions from the list of register elementary operations. In Chs. 10 and 11,
we use register operation sequences to specify the internal operations of
digital computers.

8-3 THE MEMORY UNIT

The registers in a digital computer may be classified as either operational
or storage. As mentioned previously, an operational register is capable of
storing binary information in its flip-flops, and in addition, has combina-
tional gates capable of data processing tasks. A sforage register is used
solely for temporary storage of binary information. This information cannot
be altered when transferred in and out of the register. A memory unit is a
collection of storage registers, together with the associated circuits needed
to transfer information in and out of the registers. The storage registers in a
memory unit are called memory registers.

The bulk of the registers in a digital computer are memory registers, to



Sec. 8-3 THE MEMORY UNIT 245

Table 8-2 Examples of symbolic notation and elementary operations

Symbolic
designation Description

4 all bits of register A

A; the ith flip-flop of register A

“, ) contents of flip-flops 1 through 8 of register A

A)=B contents of register A are transferred to register B

0=C clear register C (transfer 0’s to all flip-flops)

“i+1) =A; contents of flipflop i + 1 of register A are transferred
to flip-flop i of register A

I{M] subregister M which is part of register I (see Sec. 10-2)

<D> memory register specified by the address in the
D register (see Sec. 8-3)

A+ B =4 contents of register A are added to contents of regis-

-~ ter B and the sum transferred to register A

A =4 complement all flip-flops in register 4

“ =B contents of register A are equal to contents of
register B

L) =C =4 swap contents of registers 4 and C during one
clock pulse

P:(O)+1=C if Boolean variable P is logic-1, then increment
(increase by one) register C

which information is transferred for storage and from which information is
available when needed for processing. A comparatively few operational
registers are found in the processor unit. When data processing takes place,
the information from selected registers in the memory unit is first trans-
ferred to the operational registers in the processor unit. Intermediate and
final results obtained in the operational registers are transferred back to
selected memory registers. Similarly, binary information received from input
devices is first stored in memory registers, information transferred to output
devices is taken from registers in the memory unit.

The component that forms the binary cells of registers in a memory
unit must have certain basic properties, the most important of which are:
(a) it must have a reliable two-state property for binary representation,
(b) it must be small in size, (c) the cost per bit of storage should be as
low as possible, and (d) the time of access to a memory register should
be reasonably fast. Examples of memory unit components are: magnetic
cores, semiconductor ICs, and magnetic surfaces in tapes, drums, or disks.

A memory unit stores binary information in groups called words; each
word being stored in a memory register. A word in memory is an entity
of n bits that moves in and out of storage as a unit. A memory word
may represent an operand, an instruction, a group of alphanumeric
characters, or any binary coded information. The communication between
a memory unit and its environment is achieved through two control
signals and two external registers. The control signals specify the direction
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of transfer required; that is, whether a word is to be stored in a memory
register or whether a word previously stored is to be transferred out of a
memory register. One external register specifies the particular memory
register chosen out of the thousands available; the other specifies the
particular bit configuration of the word in question. The control signals
and the registers are shown in the block diagram of Fig. 8-8.

The memory address register specifies the memory word selected. Each
word in memory is assigned a number identification starting from 0 up to
the maximum number of words available. To communicate with a specific
memory word, its location number, or address, is transferred to the address
register. The internal circuits of the memory unit accept this address from
the register and open the paths needed to select the word called. An
address register with n bits can specify up to 2” memory words. Computer
memory units can range from 1024 words, requiring an address register of
10 bits, to 1,048,576 = 22° words, requiring a 20-bit address register.

The two control signals applied to the memory unit are called read and
write. A write signal specifies a transfer-in function; a read signal specifies a
transfer-out function. Each is referenced from the memory unit. Upon
accepting one of the control signals, the internal control circuits inside the
memory unit provide the desired function. Certain types of storage units,
because of their component characteristics, destroy the information stored
in a cell when the bit in that cell is read out. Such a unit is said to be a

MEMORY UNIT

read

n words Control
m bits per word Signals

Memory address
register write

Input address

Memory buffer
register

in out
Information

Figure 8-8 Block diagram of a memory unit showing communication
with environment
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destructive read-out memory as opposed to a nondestructive memory where
the information remains in the cell after it is read out. In either case, the
old information is always destroyed when new information is written. The
sequence of internal control in a destructive read-out memory must provide
control signals that will cause the restoration of the word back into its
binary cells if the application calls for a non-destructive function.

The information transfer to and from registers in memory and the
external environment is communicated through one common register called
the memory buffer register (other names are: information register and
storage register). When the memory unit receives a wrife control signal, the
internal control interprets the contents of the buffer register to be the bit
configuration of the word to be stored in a memory register. With a read
control signal, the internal control sends the word from a memory register
into the buffer register. In each case, the contents of the address register
specify the particular memory register referenced for writing or reading.

Let us summarize the information transfer characteristics of a memory
unit by an example. Consider a memory unit of 1024 words with eight bits
per word. To specify 1024 words we need an address of 10 bits, since
21% = 1024. Therefore, the address register must contain 10 flip-flops. The
buffer register must have eight flip-flops to store the contents of words
transferred in and out of memory. Let us use the following symbolic
notation for the various registers:

D address register

B buffer register

D) contents of D register

<D> memory register addressed by D
(<D>) the contents of <D>

Figure 8-9 shows the initial contents of three registers: the D register, the B
register, and the memory register addressed by D:

D) 0000101010 = decimal 42 (contents of D register)
<D> = memory register number 42

(<D>)= 01101110 (contents of memory register number 42)
B) 10010010 (contents of buffer register)

The following elementary operations are needed to read the contents of
memory register number 42:

0000101010 = D

read: (K D>)=B

The binary address is first transferred to the D register. A read control
signal applied to the memory unit causes a transfer from the specified



248 OPERATIONAL AND STORAGE REGISTERS Chap. 8

Address r
0-1023 ‘l : Memory unit
'

43
000010101042} 01101110
41
Address register (D) 40

p=—-—

10010010

Buffer register (B)

Figure 8-9 Initial values of registers

memory register to the B register. This transfer is depicted in Fig. 8-10(a).

A write control signal applied to the memory unit causes a transfer of
information as shown in Fig. 810(b). The following elementary operations
describe the transfer of the eight-bit word 10010010 into memory
register 42:

0000101010 = D , 10010010 = B
write: (B) = <D >

The address is transferred to the D register and the contents of the word
are transferred into the B register. A write control signal transfers the
contents of B into the memory register specified by the D register.

=T

|
1 Memory Unit Memory Unit

|
<D>=42] 01101110 | <D>=42} 10010010

: : : :
] ) ‘ !
H ] H 1
B| o1101110 | B| 10010010 |
(a)Read: (D) =(B) (b) Write: (B) =<D>

Figure 8-10 Information transfer during read and write
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In the above example we have assumed a memory unit with nondestruc-
tive read-out property. Such memories can be constructed with semicon-
ductor ICs. They retain the information in the memory register when the
register is sampled during the reading process so that no loss of information
occurs. Another component commonly used in memory units is the mag-
netic core. A magnetic core characteristically has destructive read-out; i.e., it
loses the stored binary information during the reading process. Examples of
semiconductor and magnetic core memories are presented in Sec. 8-4.

Because of its destructive read-out property, a magnetic core memory
must provide additional control functions to restore the word back into the
memory register. A read control signal applied to a magnetic core memory
unit causes information transfer as depicted in Fig. 811. This can be
expressed symbolically as follows:

read:
ty: (KD>)=B,0=><D> destructive read-out
t: (B) = <D> restore contents to memory register

During the first halfcycle designated by f,, the contents of the memory
register are transferred to the B register. Since this is a destructive read-out
memory, the contents of the memory register are destroyed. The elementary
operation 0 = <D> designates the fact that the memory register is auto-
matically cleared; i.e., receives all 0’s during the process of reading. Without
this additional designation, we would have to assume that the contents of
<D> have not changed. To restore the previously stored word into the
memory register, we need a second half-cycle f,. Remember that the B
register holds the word just read from memory and the D register holds the
address of the memory register, so that the transfer during #, automatically
restores the lost information.

A write control signal applied to a magnetic core memory causes a
transfer of information as shown in Fig. 812. In order to transfer new

—

1 1
! Memory Unit | Memory Unit Memory Unit

<D>=42]101101110 00000000 01101110

- - p—
b o e

- - -
e - -

b

r01101110] r01101110|

initial ti:(<D>) =B, 0 =<D> ty: (B) = <D>

B l Anything

Destructive read Restore contents

Figure 8-11 Information transfer in a magnetic core memory during
read command
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Figure 8-12 Information transfer in a magnetic core memory during
write command

information into magnetic cores, the old information must be erased first
by clearing all cells to zero (see Sec. 84). Therefore, the memory register is
cleared during the first half cycle and only during the second half-cycle are
the contents of the B register transferred to the designated memory register.
In symbolic notation we have

write:

t;: 0=>=<D> clear memory register
t;: (B) =<D> transfer word to memory register

The sum of the two half-cycles ¢, + t, in either the read or write
condition is called the memory cycle time.

The mode of access of a memory system is determined by the type of
components used. In a random-access memory, the registers may be thought
of as being separated in space, with each register occupying one particular
spatial location as in a magnetic core memory. In a sequential-access
memory, the information stored in some medium is not immediately acces-
sible but is available only at certain intervals of time. A magnetic tape unit
is of this type. Each memory location passes the read and write heads in
turn, but information is read out only when the requested word has been
reached. The access time of a memory is the time required to select a word
and either read or write it. In a random-access memory, the access time is
always the same regardless of the word’s particular location in space. In a
sequential memory, the access time depends on the position of the word at
the time of request. If the word is just emerging out of storage at the time
it is requested, the access time is just the time necessary to read or write
it. But, if the word happened to be in the last position, the access time
also includes the time required for all the other words to move past the
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Table 8-3 Access Time and Access Mode of Memory Types.

Typical access
Storage type time Access mode
magnetic cores 1 usec random
plated wire 300 nsec __ random
semiconductor IC 400 nsec " random
magnetic drum 10-40 msec sequential
magnetic tape 0.05-500 sec sequential
magnetic disks 10-80 msec sequential

terminals. Thus, the access time in a sequential memory is variable.
Table 8-3 lists typical access time for various memory types.

Memory units whose components lose stored information with time or
when the power is turned off are said to be volatile. A semiconductor
memory unit is of this category since its binary cells need external power
to maintain the needed signals. By contrast, a nonvolatile memory unit,
such as magnetic core or magnetic disk, retains its stored information after
removal of power. This is because the stored information in magnetic
components is manifested by the direction of magnetization, which is
retained when power is turned off. A nonvolatile property is desirable in
digital computers because many useful programs are left permanently in the
memory unit. When power is turned off and then on again, the previously
stored programs and other information are not lost but continue to reside
in memory.

84 EXAMPLES OF RANDOM-ACCESS MEMORIES

The internal construction of two different types of random-access memories
are presented diagramatically in this section. The first is constructed with
\ﬂip-ﬂops and gates and the second with magnetic cores. To be able to
include the entire memory unit in one diagram, it is necessary that a
limited storage capacity be used. For this reason, the memory units pre-
sented here have a small capacity of 12 bits arranged in four words of 3
bits each. Commercial random-access memories may have a capacity of
thousands of words and each word may range somewhere between 8 and 64
bits. The logical construction of large capacity memory units would be a
direct extension of the configuration shown here.

The logic diagram of a memory unit that uses flip-flops and gates is
shown in Fig. 8-13. The entire unit may be constructed physically with ICs
deposited in one semiconductor chip. The binary cell that stores one bit of
information consists of an RS flip-flop, three AND gates, and an inverter.
The input gates allow information to be transferred into the flip-flop when
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the write signal is logic-1. An output gate samples the output of the
flip-flop when the read signal is logic-1. Each small box labeled BC in the
diagram includes within it the circuit of a binary cell. The four lines going
into each BC box designate the three inputs and one output as specified in
the detailed diagram of the binary cell.

To distinguish between four words we need a two-bit address. Therefore,
the address register must have two flip-flops. To store a word of three bits,
we need a buffer register with three flip-flops. The input information to be
stored in memory is first transferred into the buffer register. The output
information read from memory is available in the buffer register.

The address of the word held in the address register goes through a
decoder circuit and each of the four outputs of the decoder is applied to
the inputs of two gates. One of these gates receives the read signal and the
other, the write signal. When the read signal is logic-1, the gates that go to
the read input of the binary cells become logic-1 and the contents of the
three cells of the word specified by the address register are transferred to
the buffer register. When the write signal is logic-1, the gates that go to the
write input of the binary cells become logic-1 and the contents of the
buffer register are transferred to the three cells of the word specified by
the address register. The two operations perform the required read and
write transfers as specified in Sec. 8-3.

A magnetic core memory uses magnetic cores to store binary informa-
tion. A magnetic core is a doughnut-shaped toroid made of magnetic
material. In contrast to a semiconductor flip-flop that needs only one
physical quantity such as voltage for its operation, a magnetic core employs
three physical quantities: current, magnetic flux, and voltage. The signal
that excites the core is a current pulse in a wire passing through the core.
The binary information stored is represented by the direction of magnetic
flux within the core. The output binary information is extracted from a
wire linking the core in the form of a voltage pulse.

The physical property that makes a magnetic core suitable for binary
storage is its hysteresis loop, as shown in Fig. 8-14(c). This is a plot of
current vs. magnetic flux and has the shape of a square loop. With zero
current, a flux which is either positive (counter-clockwise direction) or
negative (clockwise direction) remains in the magnetized core. One direction,
say counter-clockwise magnetization, is used to represent a 1 and the other
to represent a 0. '

A pulse of current applied to the winding through the core can shift the
direction of magnetization. As shown in Fig. 8-14(a), current in the down-
ward direction produces flux in the clockwise direction causing the core to
go to the O state. Fig. 8-15(b) shows the current and flux directions for
storing a 1. The path that the flux takes when the current pulse is applied
is indicated by arrows in the hysteresis loop.
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Reading out the binary information stored in the core is complicated by
the fact that flux cannot be detected when it is not changing. However, if
flux is changing with respect to time, it induces a voltage in a wire that
links the core. Thus, read-out could be accomplished by applying a current
in the negative direction as shown in Fig. 8-15. If the core is in the 1
state, the current reverses the direction of magnetization and the resulting
change of flux will produce a voltage pulse in the sense wire. If the core is
already in the O state, the negative current will leave the core magnetized in
the same direction, causing a very slight disturbance of magnetic flux which
results in a very small output voltage in the sense wire. Note that this is a
destructive read-out since the read current always returns the core to the 0
state. The previously stored value is lost.

Figure 8-16 shows the organization of a magnetic core memory con-
taining four words with three bits each. Comparing it with the semicon-
ductor memory unit of Fig. 8-13 we note that the buffer register, address
register, and decoder are exactly the same. The binary cell now is a
magnetic core and the wires linking it. The excitation of the core is
accomplished by means of a current pulse generated in a driver (abbreviated
DR). The output information goes through a sense amplifier (abbreviated
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SA) whose outputs set corresponding flip-flops in the buffer register. Three
wires link each core. The word-wire is excited by a word-driver and goes
through the three cores of a word. A bit-wire is excited by a bit-driver and
goes through four cores in the same bit position. The sense-wire links the
same cores as the bit-wire and is applied to a sense amplifier that shapes
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the voltage pulse when a 1 is read and rejects the small disturbance when a
0 is read.

During a read operation, a word-driver current pulse is applied to the
cores of the word selected by the decoder. The read current is in the
negative direction (Fig. 8-15) and causes all cores of the selected word to
go to the O state, irrespective of their previous state. Cores which previously
contained a 1 switch their flux and induce a voltage into their sense-wire.
The flux of cores which already contained a O is not changed. The voltage
pulse on a sense-wire of cores with a previous 1 is amplified in the SA; sets
the corresponding flip-flop in the buffer register.

During a write operation, the buffer register holds the information to be
stored in the word specified by the address register. We assume that all
cores in the selected word are initially cleared; i.e., all are in the O state so
that cores requiring a 1 need to undergo a change of state. A current pulse
is generated simultaneously in the word-driver selected by the decoder and
in the bit-driver, whose corresponding buffer register flip-flop contains a 1.
Both currents are in the positive direction, but their magnitude is only half
that needed to switch the flux to the 1 state. This half current by itself is
too small to change the direction of magnetization. But the sum of two
half currents is enough to switch the direction of magnetization to the
1 state. A core switches to the 1 state only if there is a coincidence of
two half currents from a word-driver and a bit-driver. The direction of
magnetization of a core does not change if it receives only half current
from one of the drivers., The result is that the magnetization of cores is
switched to the 1 state only if the word and bit wires intersect; that is,
only in the selected word and only in the bit position in which the buffer
register is a 1.

The read and write operations described above are incomplete. This is
because the information stored in the selected word is destroyed by the
reading process and the write operation works properly only if the cores are
initially cleared. As mentioned in Sec. 83, a read operation must be
followed by another cycle that restores the values previously stored in the
cores. A write operation is preceeded by a cycle that clears the cores of the
selected word.

The restore operation during a read cycle is equivalent to a write
operation which, in effect, rewrites the previously read information from
the buffer register back into the word selected. The clear operation during a
write cycle is equivalent to a read operation which destroys the stored
information but prevents the read information from reaching the buffer
register by inhibiting the SA. Restore and clear cycles are normally initiated
by the memory internal control, so that the memory unit appears to the
outside as having a nondestructive read-out property.

Many types of memory units other than the two presented in this
section have been used in digital computers. Information about other types
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of memories including an extensive bibliography can be found in
references 4-6.

8-5 DATA REPRESENTATION IN REGISTERS

The bit configuration found in registers represents either data or control
information. Data are operands and other discrete elements of information
operated on to achieve required results. Control information is a bit or
group of bits that specify the operations to be done. A unit of control
information stored in digital computer registers is called an instruction and
is a binary code that serves to specify the operations to be performed on
the stored data. Instruction codes and their representation in registers are
presented in Sec. 10-1. Some commonly used types of data and their
representation in registers are presented in this section.

Binary Numbers

A register with n flip-flops can store a binary number of » bits; each
flip-flop represents one binary digit. This represents the magnitude of the
number but does not give information about its sign or the ‘position of the
binary point. The sign is needed for arithmetic operations, as it shows
whether the number is positive or negative. The position of the binary
point is needed to represent integers, fractions, or mixed interger-fraction
numbers.

The sign of a number is a discrete quantity of information having two
values: plus and minus. These two values can be represented by a code of
one bit. The convention is to represent a plus with a 0 and a minus with
a 1. To represent a sign binary number in a register we need n + 1
flip-flops; n flip-flops for the magnitude and one for storing the sign of the
number.

The representation of the binary point is complicated by the fact that it
is characterized by a position between two flip-flops in the register. There
are two possible ways of specifying the position of the binary point in a
register: by giving it a fixed-point position or by employing a floating-point
representation. The fixed-point method assumes that the binary point is
always fixed in one position. The two positions most widely used are: (a) a
binary point in the extreme left of the register to make the stored number
a fraction or (b) a binary point in the extreme right of the register to
make the stored number an integer. In either case, the binary point is not
physically visible but is assumed from the fact that the number stored in
the register is treated as a fraction or as an integer. The floating-point
representation uses a second register to store a number that designates the



258 OPERATIONAL AND STORAGE REGISTERS Chap. 8

position of the binary point in the first register. Floating-point representa-
tion is explained in more detail below.

When a fixed-point binary number is positive, the sign is represented by
a 0 and the magnitude by a positive binary number. When the number is
negative, the sign is represented by a 1 and the magnitude may be repre-
sented in any one of three different ways. These are:

1. sign-magnitude
2. sign-1’s complement
3. sign-2’s complement

In the sign-magnitude representation, the magnitude is represented by a
positive binary number. In the other two representations, the number is
either in 1’s or 2’s complement. If the number is positive, the three
representations are the same.

As an example, the binary number 9 is written below in the three
representations. It is assumed that a seven-bit register is available to store
the sign and the magnitude of the number.

+9 9
sign-magnitude 0 001001 1 001001
sign-1’s complement 0 001001 1 110110
sign-2’s complement 0 001001 1110111

A positive number in any representation has a 0 in the left-most bit for a
plus followed by a positive binary number. A negative number always has
a 1 in the left-most bit for a minus, but the magnitude bits are represented
differently. In the sign-magnitude representation, these bits are the positive
number; in the 1’s-complement representation these bits are the complement
of the binary number; and in the 2 complement representation, the
number is in its 2’s complement form.

The addition and subtraction of two numbers in sign-magnitude repre-
sentation is identical to paper and pencil arithmetic, but the machine
implementation of this calculation is somewhat involved and inefficient. On
the other hand, the rule for addition and subtraction of two numbers in
complement representation is much simpler to implement. The algorithm
and implementation of sign-magnitude addition and subtraction can be
found in Ch. 12. Binary arithmetic with sign-complement representation is
treated in Sec. 9-9.

Decimal Numbers

The representation of decimal numbers in registers is a function of the
binary code used to represent a decimal digit. A four-bit decimal code, for
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example, requires four flip-flops for each decimal digit. The representation
of +4385 in BCD requires at least 17 flip-flops; 1 flip-flop for the sign and
4 for each digit. This number is represented in a register with 25 flip-flops
as follows:

+ 0 0 4 3 8 5

\ T \ N7 \ \

0000000000100001110000101

By representing numbers in decimal, we are wasting a considerable
amount of storage space since the number of flip-flops needed to store a
decimal number in a binary code is greater than the number of flip-flops
needed for its equivalent binary representation. Also, the circuits required to
perform decimal arithmetic are much more complex. However, there are
some advantages in the use -of decimal representation, mostly because com-
puter input and output data are generated by people that always use the
decimal system. A computer that uses binary representation for arithmetic
operations requires data conversion from decimal to binary prior to per-
forming calculations. Binary results must be converted back to decimal for
output. This procedure is time consuming; it is worth using provided the
amount of arithmetic operations is large, as is the case with scientific
applications. Some applications such as business data processing require
small amounts of arithmetic calculations. For this reason, some computers
perform arithmetic calculations directly on decimal data (in binary code)
and thus eliminate the need for conversion to binary and back to decimal.
Large-scale computer systems usually have hardware for performing arith-
metic calculations both in binary and in decimal representation. The user
can specify by programmed instructions whether he wants the computer to
perform calculations on binary or decimal data. A decimal adder is intro-
duced in Sec. 12-2.

There are three ways to represent negative fixed-point decimal numbers.
They are similar to the three representations of a negative binary number
except for the radix change:

1. sign-magnitude
2. sign-9’s complement
3. sign-10’s complement

For all three representations, a positive decimal number is represented by
a 0 (for plus) followed by the magnitude of the number. It is in regard to
negative numbers that the representations differ. The sign of a negative
number is represented by a 1 and the magnitude of the number is positive
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in sign-magnitude representation. In the other two representations the
magnitude is represented by the 9’s or 10’s complement.

The sign of a decimal number is sometimes taken as a four-bit quantity
to conform with the four-bit representation of digits. For example, one very
popular computer uses the code 1100 for plus and 1101 for minus.

Floating-Point Representation

Floating-point representation of numbers needs two registers. The first
represents a signed fixed-point number and the second, the position of the
radix point. For example, the representation of the decimal number
+6132.789 is as follows:

sign [— initial decimal point sign—l
06132789 004
first register second register
(coefficient) (exponent)

The first register has a O in the most significant flip-flop position to denote
a plus. The magnitude of the number is stored in a binary code in
28 flip-flops, with each decimal digit occupying 4 flip-flops. The number in
the first register is considered a fraction, so the decimal point in the first
register is fixed at the left of the most significant digit. The second register
contains the decimal number +4 (in binary code) to indicate that the actual
position of the decimal point is four decimal positions to the right. This
representation is equivalent to the number expressed by a fraction times 10
to an exponent; that is +6132.789 is represented as +.6132789 X 10" 4.
Because of this analogy, the contents of the first register are called the
coefficient (and sometimes mantissa or fractional part) and the contents of
the second register, the exponent (or characteristic).

The position of the actual decimal point may be outside the range of
digits of the coefficient register. For example, assuming sign-magnitude
representation, the following contents

02601000 104

coefficient exponent

represent the number +.2601000 X 10 = + .000026010000, which pro-
duces four more 0% on the left. On the other hand the following contents



Sec. 8-5 DATA REPRESENTATION IN REGISTERS 261

12601000 012

coefficient exponent

represent the number —.2601000 X 10!2 = —260100000000, which produces
five more O’s on the right.

In the above examples, we have assumed that the coefficient is a
fixed-point fraction. Some computers assume it to be an integer, so the
initial decimal point in the coefficient register is to the right of the least
significant digit.

Another arrangement used for the exponent is to remove its sign bit
altogether and consider the exponent as being “biased.” For example,
numbers between 10"*° and 1075 can be represented with an exponent of
two digits (without sign bit) and a bias of 50. The exponent register always
contains the number E + 50, where F is the actual exponent. The subtrac-
tion of 50 from the contents of the register gives the desired exponent.
This way, positive exponents are represented in the register in the range of
numbers from 50 to 99. The subtraction of 50 gives the positive values
from 00 to 49. Negative exponents are represented in the register in the
range of 00 to 49. The subtraction of 50 gives the negative values in the
range of -50 to -1.

A floating-point binary number is similarly represented with two registers,
one to store the coefficient and the other, the exponent. For example, the
number +1001.110 can be represented as follows:

sign initial binary point r sign
0100111000 00100
coefficient exponent

The coefficient register has 10: flip-flops; 1 for sign and 9 for magnitude.
Assuming that the coefficient is a fixed-point fraction, the actual binary
point is four positions to the right, so the exponent has the binary value
+4. The number is represented in binary as .10011000 X 10'°° (remember
that 10'°° in binary is equivalent to decimal 2%).

Floating-point is always interpreted to represent a number in the fol-
lowing form:

c ¥

where ¢ represents the contents of the coefficient register and e the
contents of the exponent register. The radix (base) r and the radix-point
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position in the coefficient are always assumed. Consider, for example, a
computer that assumes integer representation for the coefficient and base 8
for the exponent. The octal number +17.32 = +1732 X 82 will look like this:

si%n l—sign
01732 102

initial J

octal point

coefficient exponent

When the octal representation is converted to binary, the binary value of
the registers becomes:

0001111011010 1000010

coefficient exponent

A floating-point number is said to be normalized if the most significant
position of the coefficient contains a nonzero digit. In this way, the
coefficient has no leading zeros and contains the maximum possible number
of significant digits. Consider, for example, a coefficient register that can
accomodate five decimal digits and a sign. The number +.00357 X 10%® =
3.57 is not normalized because it has two leading zeros and the unnor-
malized coefficient is accurate to three significant digits. The number can be
normalized by shifting the coefficient two positions to the left and
decreasing the exponent by two to obtain: +35700 X 10! = 3.5700, which
is accurate to five significant digits.

Arithmetic operations with floating-point number representation are more
complicated than arithmetic operations with fixed-point numbers and their
execution takes longer and requires more complex hardware. However,
floating-point representation is more convenient because of the scaling
problems involved with fixed-point operations. Many computers have a
built-in capability to perform floating-point arithmetic operations. Those
that do not have this hardware are usually programmed to operate in this
mode.

Adding or subtracting two numbers in floating-point representation
requires first an alignment of the radix point since the exponent part must
be made equal before adding or subtracting the coefficients. This alignment
is done by shifting one coefficient while its exponent is adjusted until it is
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equal to the other exponent. Floating-point multiplication or division
requires no alignment of the radix-point. The product can be formed by
multiplying the two coefficients and adding the two exponents. Division is
accomplished from the division with the coefficients and the subtraction of
the divisor exponent from the exponent of the dividend.

Double Length Words

The registers in a digital computer are of finite length. This means that
the maximum number that can be stored in a register is finite. If the
precision needed for calculations exceeds the maximum capacity of one
register, the user can double the bit capacity by employing two registers to
store an operand. One register would contain the most significant digits and
the other, the least significant digits.

For example, consider a computer whose memory and processor registers
contain 16 bits, One bit is needed to store the sign of a fixed-point
number, so the range of integers that can be accomodated in a register is
between 32! = 32,768. This number may be too small for a particular
application. By using two registers it is possible to increase the range of
integers to 231,

The same reasoning applies to floating-point numbers when greater length
coefficients are needed for greater resolution. Using a computer with 16-bit
words as before, a floating-point number can be stored in two words. The
exponent may occupy the first seven bits of the first word giving an
exponent value of 363. The coefficient would then occupy 9 bits of the
first word and 16 bits of the second word for a total of 25 bits. The
number of bits in the coefficient can be extended to 41 by using a third
word.

Double length words and sometimes floating-point operands are stored in
two or more consecutive memory registers. They need two or more cycles
to be read or written in memory. Some computers have available double
length registers and/for special floating-point registers in their processor unit.
These registers can usually execute the required arithmetic operations
directly with double precision or floating-point numbers. Computers with a
single length register can be programmed to operate with double length
words. In any case, operands that exceed the number of bits of a memory
word must be stored in two or more consecutive memory registers.

Some computers use variable length words and allow the user to specify
the number of bits that he wants to use for the operands. This implies a
memory structure composed of variable length cells instead of fixed length
words. This can be done by making the smallest data component address-
able and using a memory address that specifies the first and last cell of the
operand.
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Character Strings

The types of data considered thus far represent numbers that a computer
uses as operands for arithmetic operations. However, a computer is not only
a machine that stores numbers and does high-speed arithmetic. Very often,
a computer manipulates symbols rather than numbers. Most programs
written by computer users are in the form of characters; ie., a set of
symbols comprised of letters, digits, and various special characters. A com-
puter is capable of accepting characters (in a binary code), storing them in
memory, performing operations on and transferring characters to an output
.device. A computer can function as a character-string manipulating machine.
By a character string is meant a finite sequence of characters written one
after another.

Characters are represented in computer registers by a binary code. In
Table 1-5 we listed three different character codes in common use. Each
member of the code represents one character and consists of either six,
seven, or eight bits, depending on the code. The number of characters that
can be stored in one register depends on the length of the register and the
number of bits used in the code. For example, a computer with a word
length of 36 bits that uses a character code of 6 bits can store six
characters per word. Character strings are stored in memory in consecutive
locations. The first character in the string can be specified from the address
of the first word. The last character of the string may be found from the
address of the last word, or by specifying a character count, or by a special
mark designating end of character string. The manipulation of characters is
done in the registers of the processor unit, with each character representing
a unit of information.

Logical Words

Certain applications call for manipulating the bits of a register with
logical -operators. Logical operations such as complement, AND, OR,
exclusive-or, etc., can be performed with data stored in registers. However,
logical operations must - consider each individual bit of the register
separately, since they operate on two-valued variables. In other words, the
logical operations must consider each bit in the register as a Boolean
variable having the value of 1 or O.

For example, to complement the contents of a register we . need to
complement each bit of the word stored in it. As a second example, the
OR operation between the contents of two registers 4 and B is shown
below:

“4) 1100 contents of 4
(B) 1010 contents of B

v ®B) 1110 resuit of OR operation
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The result is obtained by performing the OR operation with every pair of
corresponding bits.

The datum available in a register during logical operations is called a
logical word. A logical word is interpreted to be a bit string as opposed to
character strings or numbers. Each bit in a logical word functions in exactly
the same way as every other bit; in other words, the unit of information of
a logical word is a bit.

PROBLEMS

8-1. Show the configuration of a bus transfer system that contains four
registers of three bits each. Use multipiexers and demultiplexer
circuits.

8-2. A digital system has 16 registers, each with 32 bits. It is necessary
to provide transfer paths for data from each register to each other
register. (a) How many lines are needed for direct transfers?
(b) How many lines are needed for bus transfer? (c) How many
lines are needed if the 16 registers form a memory unit? Compare
the three configurations with respect to the time it takes to transfer
data between two given registers.

8-3. A three-bit register 4 has one input x and one output y. The
register operations can be described symbolically as follows:

P:x=4,,A3)=y,4)=>4; 44 i=1,2
Draw the state table for the sequential circuit and its corresponding
state diagram. What is the function of the circuit?

8-4. A digital system has three flip-flops; i.e., three one-bit registers
labeled A, B, C. The state of the flip-flops changes according to the
following elementary operations:

x: 0 =4, 1 =B, 1 =C
y: (B) = 4, (@ = B, (B)=>C
zA: (A) = 4, (B) = B, y=0c
Give the sequence of states of the flip-flops for the following
sequence of control signals.

@x,y 2 9z 2zy x
®)x, y, v,z 9 ¥ z

8-5. List the elementary operations needed to transfer bits 1 - 8 of
register 4 to bits 9-16 of register B and bits 1-8 of register B to
bits 9-16 of register A, all during one clock pulse.

8-6. Express the transfers depicted in Fig. 1-3, Sec. 1-7 with elementary
operations. Include address and buffer registers for the memory unit.
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8-7.

8-8.

8-10.

8-11.

8-12.

8-13.

8-14.
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Express the function of the shift register of Fig. 6-23, Sec. 6-6, with
symbolic notation.

It is required to construct a memory with 256 words, 16 bits per
word, organized as in Fig. 8-16. Cores are available in a “matrix” of
16 rows and 16 columns.

(a) How many matrices are needed?

(b) How many flip-flops are in the address and buffer registers?

(c) How many cores receive current during a read cycle.

(d) How many cores receive at least half current during a write
cycle?

A memory unit has a capacity of 40,000 words of 20 bits each.
How many decimal digits can be stored in a memory word? How
many flip-flops are needed for the address register if the words are
numbered in decimal?

List the elementary operations for the following transfers using (1) a
nondestructive memory and (2) a destructive read-out memory.

(a) To store binary 125 in location 63.
(b) To read memory register number 118,

(¢) To transfer contents of memory register 75 to memory register
number 90.

The magnetic core memory of Fig. 8-16 is called a linear selection
memory and has a two-dimensional (2D) organization. There is
another magnetic core memory organization called coincident-current
selection, which has a three-dimensional (3D) organization. A third
memory organization, a combination of the two types, is called a
2D selection. Consult outside sources and describe the other two
memory organizations.

What modifications or additions are required in a memory unit to
add the following capabilities:

(a) To be able to transfer incoming and outgoing words serially.
(b) To be able to select consecutive locations in memory.

(c) To be able to address memory locations with decimal numbers
in BCD.

(d) To be able to select one particular bit of the selected word.

Represent binary +27 and —27 in three representations using a register
of 10 bits,

Represent the numbers +315 and -315 in binary using the following
representations:

(a) sign-magnitude,

(b) 1’s complement,
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(c) 2’s complement, and

(d) sign-magnitude floating-point normalized.

8-15. Represent the numbers +315 and -315 in decimal using BCD in the
following representations:

(a) sign-magnitude,
(b) 9’s complement,
(c) 10’s complement,
(d) sign-magnitude floating-point normalized.
8-16. Given two binary numbers X and Y in floating-point sign-magnitude

representation. The numbers are normalized and placed in registers
and an addition is to be performed; i.e., X + Y.

(a) Which of the two coefficients should be shifted, in what direc-
tion, and by how much?

(b) How can we determine the value of the exponent of the sum?

(c) After the addition of the two coefficients, the sum may be
unnormalized. Specify what should be done to the coefficient
and the exponent in order to normalize the sum,

8-17. What is the largest and smallest positive quantity which can be
represented when the coefficient is normalized:

(a) by a 36-bit floating-point binary number having 8 bits plus sign
for the exponent and fraction representation for the coefficient?

(b) by a 48-bit floating-point binary number having 11 bits plus sign
for the exponent and integer representation for the coefficient?
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BINARY ADDITION
AND THE
9 ACCUMULATOR REGISTER

9-1 INTRODUCTION

General purpose digital computers as well as many special purpose systems
quite often incorporate a multipurpose register into the arithmetic section
or the central processing unit. Some digital computers have more than one
such register. These registers are called by various names, but the name
accumulator is the one most widely used. The name is derived from the
arithmetic addition process encountered in digital computers. The process of
arithmetic addition of two or more numbers is carried out by initially
storing these numbers in the memory unit and clearing the accumulator
register. The numbers are then read from memory one at a time and added
to the register in consecutive order. The first number is added to zero and
the sum transferred to the register. The second number is added to the
contents of the register and the newly formed sum replaces its previous
value. This process is continued until all numbers are added and the sum
formed. Thus, the register “accumulates” the sum in a step-by-step manner
by performing sequential additions between a new number read from
memory and the previously accumulated sum.

The accumulator is the most used register in the arithmetic unit. In
addition to the function described above, this register performs various
other operations either specified by programmed instructions or required to
implement other machine instructions. The accumulator stores the operands
used in arithmetic and logical operations and retains the results of computa-

268
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tions formed. When two numbers are multiplied, the multiplier and
multiplicand are read from memory into two registers and multiplication is
performed by forming a series of partial sums in the accumulator. Similarly,
subtraction, division, and logical operations are performed by the accumula-
tor logic circuits. Other operations such as complementing, counting, and
shifting are also encountered.

The purpose of this chapter is to present a simple multipurpose
accumulator register, together with its associated combinational circuits. The
register proper will be designated by the letter 4 and will consist of »
flip-flops 4,, 4,2, ..., A,, numbered in ascending order starting from the
right-most element. We shall assume “the accumulator” to mean the A4
register plus its associated logic circuits and the A register will be called
“the accumulator register.” We concentrate the discussion first on the
subject of addition of two binary numbers, since this is the most involved
part of the logic design of an accumulator. In Sec. 9-8 a multipurpose
register having other elementary operations besides addition is specified.

One of the primary functions of an accumulator is the addition of two
numbers. The following sections present a few alternative ways to accom-
plish this task. One of these alternatives will be chosen for inclusion in the
final design of the register. In order to realize the machine performance of
binary addition, we must visualize the existence of two registers, one storing
the augend and the other the addend. The outputs of these registers are
applied to logic circuits that produce the sum; the sum is then transferred
into a register for storage. The following numerical example will clarify the
process:

Previous carry 00110 G
Augend 01011 A;
Addend 10011 B;
Sum i1110 S;
Carry 00011 Cl +1

The augend is in register 4 (accumulator register) and the addend in register
B. The bits are added starting from the least significant position to form a
sum bit and carry bit. The previous carry bit C; for the least significant
position must be 0 and the carry bit C;, ; for this example is a 1. The
value of C;, ; in a given significant position is copied into C; one higher
significant position to the left. The sum bits are thus generated starting
from the right-most position and are available as soon as the corresponding
previous carry bit C; is known. The sum can be transferred to a third
register; however, when the process employs an accumulator, the sum is
transferred to the accumulator register, destroying the previously stored
augend.
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9-2 PARALLEL ADDITION

Binary addition is performed in parallel when all bits of the augend and
addend registers are available as outputs. The combinational circuit among
the registers that forms the sum depends on the type of flip-flops employed
in the accumulator register. Three different combinational circuits are
derived in this section. The first employs D flip-flops and the other two, T
flip-flops. Circuits using RS or JK flip-flops are equivalent to those
employing D or T flip-flops, respectively.

Addition with Full-Adders

The simplest and most forward way to add two binary numbers in
parallel is to use one full-adder (abbreviated FA) circuit for each pair of
significant bits.* This is shown schematically in Fig. 9-1 for a fourbit
adder. The implementation of adders with more than four bits is accom-
plished by extending the registers with more flip-flops and corresponding

Cs e

FA FA FA -] FA
ﬂ ‘—‘

e ADD
command

Clock
pulses

Figure 9-1 Four-bit adder using full-adder circuits

*The logic diagram of a full-adder circuit was derived in Sec. 4-3.
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FA circuits. The contents of registers A and B are added in the four FA
circuits; their sum is formed in §; to S,. Note that the input carry to the
first stage must be connected to a signal corresponding to logic-0 and that
the carry-out from the last stagé can be used for an input to a fifth stage
or as an overflow bit in a four-bit adder. The sum outputs S; to S, are
transferred to the A register through the D inputs of the flip-flops when an
ADD command signal is enabled during one clock pulse. The sum trans-
ferred will obviously destroy the previously stored augend so that the A4
register acts as an accumulator register.

Some minor variations are possible. The first stage could use a half-adder
circuit instead of a full-adder, which will result in the savings of a few
gates. RS or JK flip-flops could be used, but the complement values of
Sy-S, must be generated for the clear inputs. Only the normal outputs of
the flip-flops are shown going into the FA circuits. If the complement
outputs are also used, the inverter circuits which produce the complements
inside the FA circuits can be eliminated. The diagram chosen for Fig. 9-1
assumes the availability of a single IC chip, which includes all four FA
circuits with the carry leads internally connected. Such an IC is commonly
named “four-bit adder.” It has nine input terminals, five output terminals,
at least one terminal for the supply voltage, and one for ground.

The binary adder in Fig. 9-1 is constructed with four identical stages,
each consisting of a pair of flip-flops and their corresponding full-adder
circuit. It is interesting to note that each stage is similar to all others,
including similar interconnections among neighborhood stages. It is therefore
convenient to partition such circuits into » similar circuits, each having the
same general configuration. The ability to partition a large system into a
number of smaller and possibly similar subsystems has many advantages. It
is convenient for the design process because the design of only one typical
stage is sufficient for obtaining all the information needed to design the
entire register logic. It also brings about standardization of common circuit
configurations which can be eventually incorporated into an IC chip. In
fact, binary adders as well as accumulator registers are comparatively easier
to design and manufacture because they can be partitioned -into smaller
subregister units. - Practical adders and accumulators range somewhere
between 12 and 64 bits long. The task of designing a sequential circuit with
64 flip-flops is formidable, but the partition into 64 identical stages reduces
the design process down to the point where a sequential circuit with only
one flip-flop is considered. We shall utilize this partitioning property in the
remainder of this chapter and concentrate our efforts on the design of only
one typical stage. The entire register and its associated logic will then
consist of a number of such typical stages, where that number is equal to
the number of bits of the register.
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Addition with Complementing Flip-Flops

Flip-flops having the property of complementation are very useful for
reducing the number of gates required to form the sum. Such flip-flops are
the T and JK types. This advantage can be deduced from inspection of the
Boolean functions that describe the FA circuit. For a typical stage i, the
sum and carry are expressed by the following Boolean functions*®:

S; = A}BiC; + A}B;C} + A;B|C} + ABC 9-1)
=4; ® B; ® (9-2)

The sum bit is obtained from the exclusive-or operation of the three input
variables. Also note that the augend is in the A register and that the sum is
also transferred into the A register. Now, an inherent property of a
complementing flip-flop is that its next state produces the exclusive-or of its
input variable and the previous state value. Consider the following state
table of a single flip-flop 4 and a variable X applied to its T input.

Present T Next
state input state
A(t) X A+ 1) =A@) e X
0 0 0
0 1 1
1 0 1
1 1 0

It is clear from this table that the next state of A4 is the exclusive-or of the
present state of 4 and the input X.

From this observation, it is possible to deduce that if B; ® C; is applied
to the T input of an A; flip-flop, the next state of A; will hold the value
obtained from the exclusive-or of B;, C;, and the previous state of A4;. This
is exactly the value of the sum bit as given in Eq. 9-2.

It is possible to arrive at the same conclusion by a straightforward design
process. A typical adder stage consists of one flip-flop 4; that changes its
state during the addition process. The single stage will have an input addend
bit B; and a previous carry C;. (Note that B; is a flip-flop that does not
change state during the addition process and therefore can be considered as
an input terminal). A state table for this simple sequential circuit is
tabulated in Fig. 9-2(a). A column is included in the table for the flip-flop

*Equations 9-1 and 9-3 were derived in Sec. 4-3. Equation 9-2 follows directly
from Equation 9-1.
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Present) Inputs | Next f]ip-ﬂop
state state | input
4; |B; cila;=s| T4 B
0 0 0| O 0
o Jo 1] 1 |1 ! 1
0 1 0} 1 1 A
o {1 1|0 |oO ‘{ ! !
1 0 0] 1 0
1 0 1| 0 1 Ci
1 1 0 O 1 TA;=B;C;+ B'C;=B; &C;
1 1 1] 1 0 (a) (b)

Figure 9-2 Excitation table and map for a parallel adder stage

T input and its necessary excitation. The combinational circuit for this
two-state sequential circuit can be derived immediately from the map shown
in Fig. 9-2(b). The required flip-flop input function is

TA; = B; C{ +B; C; = B; ® (;

which is the same condition derived previously. The carry output C; ,
has not been shown in the table. It is a function of the present state and
the inputs and can easily be shown to be the same as Eq. 9-3. The logic
diagram of a typical stage is drawn in Fig. 9-3. The part of the circuit that
produces the sum has only two AND gates and one OR gate, compared to
the four AND gates and one OR gate required for the implementation of
Eq. 9-1 in sum of products form. A JK flip-flop can be used instead of a
T, with the two inputs J and K connected to receive the same signal. The
circuit of Fig. 93 with a JK flip-flop is the one chosen for the final
version of the accumulator to be completed in Sec. 9-8. For an n-bit
register, n identical circuits are required with the output carry Cj, | of one
stage connected to the input carry C; of the next stage on its left, except
for the least significant position, which requires an input C; of O, or a
circuit that corresponds to a half-adder.

Two-Step Adder

A further reduction in the number of gates per stage is realized if the
time of execution is extended to a period equal to two clock pulses by
requiring two consecutive command signals to complete the addition.
Consider two signals 4D1 and AD2 as shown in Fig. 94. Compared with
the single command signal used for the circuit in Fig. 9-3, the two-step
addition scheme to be developed here requires two clock pulses for com-
pletion. On the other hand, the two-step adder requires fewer combinational
gates for its implementation.
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Civy

—e® B;

ABI‘

—e ADD

L J ) command

CpP

Figure 9-3 Typical stage of adder with a T flip-flop

—
Clock l— H
pulses ' 41 142
AD1

AD2 —

Figure 9-4 Two consecutive Add signals for a two-step adder

The combinational logic necessary for a two-step adder will be derived
intuitively. The next state of a T flip-flop is the exclusive-or of its present
state and its input. The sum bit is obtained from the exclusive-or of B;, C;,
and the present state of A;. Now, if B; is applied during the time 7 + 1,
when the first command signal AD1 is enabled, one obtains for the next
state A; (¢ + 1), the value of 4; @ B;. Then during the time ¢ + 2, when
command signal AD2 is enabled, C; is applied to the input of the flip-flop
producing a final next state A;(¢ + 2) equal to 4; @ B; ® C;, which is
equal to the sum bit.

The carry bit must be generated in all the stages of the adder prior to
the application of the ¢ + 2 pulse. However, after signal 4D1 has been
applied, the state of the flip-flop has the value of A; @ B;. Therefore, the
carry to the next stage C;,  must be formed from the (¢ + 1) value of
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the flip-flop output. To determine the logic required for generating the
carry, we need the table of Fig. 9-5(a). In this table, the value of 4; ® B;
is first determined. The column under C;, ; is determined from the bits of
A;(?), B;, and C; However, the combinational logic required for output
C; 4+ is obtained from the columns under B; 4;(¢t + 1), and C; because
only these values are available after command signal AD1 and during
command signal AD1. Remembering that the value of A; after r + 1 is the
exclusive-or of the addend and augend bits, then from the map of
Fig. 9-5b, we obtain the Boolean function for the output carry to be:

Civ1=B4; +AG

where A; is the state of the flip-flop after command signal AD1 has been
removed and during the application of command signal AD2.

Figure 9-6 shows the logic diagram of a two-step adder. It can be seen
that this circuit requires fewer gates per stage as compared with Fig. 9-3.

A; (1+1)=
A;(t) B; C; A;®B; Ciyy
0 0 0 0 0 Ci+1 G
0 0 1 0 0 ——
0 1 0 1 0 1
0 1 1 1 1
1 0 0 1 0 Bi{ 1 1 1
1 0 1 1 1 [——
1 1 0 0 1 A;®Bi=A;(t+1)
(a) 1 1 1 0 1 (b)
Figure 9-5 Derivation of output carry in one stage of a two-step
adder
OC,'
Cis
o B;
A;
0 1 CcP
—<e
T
—0 AD?2

| 04DI

Figure 96 One stage of a two-step adder
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The price one pays for this saving is an increase in the execution time. The
process of addition in the two-step adder of Fig. 9-6 is as follows: First the
command signal 4D1 is applied. After ¢ + 1, the carry through all the
stages is allowed to propagate. Then command signal AD2 is applied,
forming the sum in the A4 register after clock pulse ¢ + 2.

9-3 CARRY PROPAGATION

The addition of two numbers in parallel implies that all the bits of the
augend and addend are available for computation at the same instant of
time. This is the difference between parallel and serial operations; in the
latter the bits of the augend and addend are available for computation only
one at a time. Before leaving the subject of parallel adders and going into
serial addition, the timing problem involved with the carry propagation will
be explained.

‘Electronic circuits take a certain amount of time from the instant the
input signal is applied to the instant when the output settles into its
appropriate logic value. This interval is defined as the propagation time of
the circuit. At any instant, a digital circuit may be in one of three
conditions: in one constant value which represents logic-1, in another
constant value which represents logic-0, or in transition between the two
values. For example, an OR gate with two inputs having the values of 0 and
1 will have in its output the value of 1. Now, if the O input is changed to
a 1, the output remains a 1 and the propagation time is zero. If, on the
other hand, the 1 input changes to a 0, the output will go through a
transition from 1 to 0. The maximum time of this transition period is the
maximum propagation time of the OR gate. When logic gates are inter-
connected and values of inputs cannot be predicted, the propagation time
between the inputs and the outputs cannot be predicted exactly. However,
we can predict the maximum propagation time by evaluating the longest
possible transition through the various gates. The propagation time is vari-
able and depends on the cireuit components and the input combination. In
clocked sequential systems, one must always wait for the maximum possible
propagation time before the output signal is triggered into a flip-flop.

Let us consider the operation of a parallel adder as shown in Fig. 9-1 or
9-3. Initially, one number is in the A register and the other number is
transferred into the B register. As soon as the outputs of the flip-flops in
register B settle down to their appropriate values, all the outputs 4; and B;
are available as inputs to the combinational circuit. The outputs of the
combinational circuit at any time have the value either of logic-0 or logic-1,
or are in transition between these two states. These outputs settle down to
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a constant value only after the signal propagates through the appropriate
gates. In other words, the outputs of the combinational circuit represent the
sum bits only after the signals have been propagated. Consider the sum bit
from a single stage, say stage 15. A;s and B,s are available in their final
form, but C;5 will not settle to its final form until the correct Cy,4 is
available in its final form. Similarly, Cy4 has to wait for Cy; and so on
down to C,. Thus only after the carry is propagated can we apply the
ADD command pulse so that at the occurrence of the next clock pulse the
correct sum bits are transferred into the A register.

Let us look at a specific example. Assume that two 36-bit numbers have
to be added. Therefore, registers 4 and B must have 36 flip-flops each.
Looking at one typical stage from Fig. 9-3, we see that the carry to the
next stage C; . ; must propagate through two levels. The first level consists
of three AND gates; the second, of one OR gate. Let us assume that the
maximum propagation time through each gate is 20 nsec (1 nano-second =
10® seconds). From the time that the previous carry C; settled down until
the next carry C;, | settles down, the signals must propagate through one
level of AND gates and one OR gate with a maximum propagation time of
40 nsec. The carry must propagate through all 36 stages, giving a maximum
delay of 1440 nsec.* Thus, the ADD command signal must wait at least
1.44 usec from the time the signals of register B settle down before it can
be applied. Otherwise, the outputs of the combinational circuits may not
represent the correct sum bits. Assume that the master-clock has a fre-
quency of 2 MHz, so that a clock pulse occurs every 500 nsec. If clock
pulse ty (at time 0) was used to transfer the addend to register B, and
assuming that the flip-flops have a maximum propagation time of 50 nsec,
the total delay encountered is 1490 nsec. This is equivalent to a delay of
three clock pulses and the ADD signal should not occur prior to clock
pulse #3. .

The carry propagation time is a limiting factor on the speed by which
two numbers can be added in a parallel digital system. Since all other
arithmetic operations are implemented through successive additions, the time
consumed during the addition process is very critical. One of the major
problems encountered in the design of an accumulator is the reduction of
the time for addition. One solution is to design digital circuits with reduced
propagation time. For instance, the reduction in the maximum propagation
time through a gate from 20 to 10 nsec reduces the carry propagation time
from 1440 to 720 nsec. But physical circuits have a limit to their capa-
bility. Logic designers, however, have come out with ingenious schemes to

*The propagation in the last stage is through the gates that form the sum; we
neglect the propagation time through the inverter of Fig. 9-3.
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reduce the time for addition, not necessarily by means of faster circuits but
by the incorporation of additional logic circuits.**

One way of reducing the carry propagation time is by a method known as
carry look-ahead. In this method as in all other methods, increase in speed
“is traded with increase in equipment and complexity. We have discussed
previously the advantages of partitioning a digital system into smaller and
possibly similar subunits. So far in our discussion the accumulator register
and its associated logic were partitioned into n typical stages, each having
one flip-flop and associated combinational logic. Now consider a partition of
an n-bit register into jgroups of k bits each so that j+k = n. As a specific
example, let n = 36, j = 12, k = 3. Each group will consist of three
flip-flops and their associated combinational logic for a total of 12 groups.
The carry for the least significant group is given by the following Boolean
functions:

C1 =0 (9-4)
C, = A,B, (9-5)
C3 =A3B, + (A, + By) G . (9-6)
Cy =A3B3 + (A3 + B;) C3 9-7)

The input carry to the second group is C4. Now, instead of waiting for C,
to propagate through the first group, which will require five levels of gates,
it can be generated from a combinational circuit with inputs A4,, 4,, 43,
and B,, B,, B;. The Boolean function for this circuit is easily obtained by
substituting C, from Eq. 9-5 into Eq. 9-6, and then substituting C3 from
Eq. 9-6 into Eq. 9-7. The final result, after rearranging, is a Boolean
expression which is a function of the output variables of the flip-flops in
group 1.

Co = A3By + AyAsBy + A1 AyAsB,+ A, A3B,B, +
AyB3B;y + A1A,ByBs + A,B,1B,B;

Since the Boolean function is expressed in the sum of products form, it can
be implemented with one level having seven AND gates followed by one
OR gate. The maximum propagation time for this curcuit is 40 nsec (using
the figure from the previous example). The carry input to the third group
can similarly be obtained from a two-level realization of a Boolean expres-
sion as a function of C4, A4, As, As, and By, Bs, Bg. Thus each group
produces not only its own carries but also the carry for the next group
ahead of time. By this scheme the maximum total carry propagation is 440
nsec for the carry to reach the input of the last (12th) group plus 120 nsec
for the carry to propagate out of the last group, for a total of 560 nsec.
This is compared with the delay of 1440 nsec obtained for single-stage

**The detailed description of all possible schemes is beyond the scope of this
book. The interested reader is referred to the literature (references 1-5) for details.
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partitioning. Obviously, if the register is partitioned into groups with more
flip-flops, the carry propagation may be reduced even further, but again one
must pay the price of more equipment. As mentioned previously this is not
the only scheme available. Even this scheme can be improved by parti-
tioning into groups within groups.

94 SERIAL ADDITION

A digital system is said to operate in a serial fashion when information is
transferred and manipulated one bit at a time. The contents of one register
are transferred to another by shifting the bits out of one register and into
the other. Similarly, any operation to be done on a single register or
between two registers is manipulated one bit at a time and the result
transferred serially into a shift register. As a general rule, digital systems
that operate in a serial mode require far less equipment than systems operating
in a parallel mode, but their speed of operation is slower.

A block diagram of a serial adder is shown in Fig. 9-7. It consists of a
shift-right accumulator register and a logic circuit capable of adding two bits
and a previous carry. The augend is stored in the accumulator register and
the addend transferred from a serial memory unit which, for this applica-
tion, can be thought of as just another shift register. The sum formed is
transferred into the accumulator and replaces the previously stored augend.

L Augend
Accumulator Register Adder Sum

. circuit
Shift —T Addend

right

Figure 9-7 Block diagram of a serial adder

At the start of the addition process, the two least significant bits of the
augend and addend are presented as inputs to the adder circuits. As the
accumulator register is shifted to the right, the sum bit formed in the adder
circuit enters the left-most flip-flop of the accumulator, and the next bit of
the addend appears from the serial memory unit. The accumulator register
proper is a shift-right register and its implementation is straightforward. The
block marked ‘“‘adder-circuit” may be thought of as a FA circuit that pro-
duces the sum but must also possess, in addition, one storage element for
temporary storage of the carry bit. Since the adder circuit must include a
memory element, it must be sequential. This sequential circuit may be
derived intuitively when we realize that the carry-out of the FA can be
stored in a flip-flop whose output can be used as the previous carry for the
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CP CP CP CcP
0 0 0 0

D D D D Ai
1 1 1 1

Accumulator Register

FA

B;

g}x‘l’s‘:elg Addend

(}

ADD
Command

Figure 9-8 Four-bit serial adder

next significant bits. Thus the circuit of Fig. 9-8 is obtained with the
“adder circuit” of Fig. 9-7 implemented as a sequential circuit consisting of
a single D flip-flop together with a combinational FA circuit.

The operation of the serial adder of Fig. 9-8 will now be described. The
accumulator initialty holds the augend, and the addend is transferred from a
serial memory unit or from another shift-register. At the start of the
addition process, the least significant bits are presented to the input of the
FA circuit, the carry flipflop C is cleared, and the ADD command signal
enabled. The signal propagates through the combinational circuit and
produces a sum bit and a carry bit. The sum bit is returned to the most
significant position of the accumulator register and the carry bit is applied
to flipflop C. When a clock pulse arrives, the sum bit is transferred into
the left-most flip-flop of the accumulator, the carry into flip-flop C, the
augend shifted one position to the right, and the next bit of the addend
arrives from memory. The output of flip-flop C now holds the previous
carry. When the next clock pulse occurs, the new sum bit to enter the
left-most position of the accumulator is the one corresponding to the
second significant position. This process continues until the fourth clock
pulse transfers the last bit of the sum into the accumulator. At this time,
the ADD command signal is disabled. Thus the addition is accomplished by
passing each pair of bits together with the previous carry through a single
FA circuit and transferring the sum to the accumulator.

The question now arises, is it possible to reduce the number of gates in
the FA of Fig. 9-8 by using a different type of flip-flop? The section of
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the circuit that produces the sum cannot be simplified because the flip-flop
that holds the addend bit is different from the one that receives the sum
bit. However, the combinational circuit that produces the carry is applied to
a flipflop that holds the previous carry and may be simplified if some
other type of flip-flop is used. The D flip-flop was originally chosen because
it resulted in the most straightforward design. It is possible to show that if
a JK or RS flip-flop is used, a reduction in the number of combinational
gates will ensue. The input functions of a JK flip-flop can be derived
directly from a state diagram. As mentioned previously, the portion of the
serial adder that forms the sum bit is a sequential circuit with at least one
flip-flop. Designating the carry flip-flop by the variable C, and noting that
the inputs to the circuit are the augend bit 4, and the addend bit B,, the
state table of Fig. 9-9(a) is obtained. The next state of C is the carry for
the next significant bits and is derived from the present state of C (input
carry) and the two inputs. A column for the output S could be included in
this table but was deleted because the sum output will obviously be the
same as Eq. 9-1. The excitation table for the two inputs of the flip-flop is
then obtained from inspection of the present-state and the next-state. The
input functions are simplified in the maps of Fig. 9-9(b), from which we
obtain

JC = AlBl
KC = A\ B}
Present Next | Flip-flop
state inputs state | inputs
C 4 B,/ | c |[Jc kcC
0 0 0 0 0 X
0 0 1 0 0 X
0 1 0 0 0 X
0 1 1 1 1 X
1 0 0 0 X 1
1 0 1 1 X 0
1 1 0 1 X 0
1 1 1 1 X 0
Al (a) 4,
1 X| X| X} X
C ‘ X|X| XX C{ 1
B, B,
JC = AB, (b) KC = 4B

Figure 9-9 Excitation table and maps for the JK carry flip-flop in a
serial adder
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Thus, only two AND gates are required to store the next carry in a JK (or
RS) flipflop as compared to four gates for the D flip-flop. This result
could be obtained intuitively from inspection of the state table of Fig.
9-9(a) by noting that the next state is 1 when both inputs are 1, that the
next state is 0 when both inputs are 0, and that the carry flip-flop does
not change states otherwise.

9-5 PARALLEL VERSUS SERIAL OPERATIONS

Before we continue with the design of a multipurpose parallel accumulator
register, let us pause to consider the difference between parallel and serial
operations. In a parallel adder, all inputs and outputs of the register are
available for manipulation at the same time. The register in the serial adder
communicates with external circuits only through its left-most and right-
most flip-flops and the addition must be processed with each pair of
significant bits one at a time. This property is inherent in the two
processes, not only in adder circuits but in other operations as well. The
registers in serial digital systems are shift registers. The external circuit that
performs the operation receives the bits sequentially at its inputs. The time
interval between adjacent bits is called the “bit-time,” and the time required
to present the whole number is called the “word-time.” These timing
sequences are generated either by the serial memory unit or by the control
section of the system. In a parallel operation, the ADD command signal is
enabled during one pulse interval to transfer the sum bits into the accumu-
lator upon the occurrence of a single clock pulse. In the serial adder, the
ADD command signal must be enabled during one whole word-time, and a
pulse applied every bit-time to transfer the generated sum bits one at a
time. Moreover, the external circuits that perform operations and change
contents of registers are always combinational in parallel systems. In serial
computers, these external circuits would be sequential (requiring extra flip-
flops) if their outputs depended not only on the present values of the
inputs but also on values of previous inputs. This has been shown in the
serial adder, where the output sum bit is a function of the previous carry,
which in turn is a function of the previous inputs.

A comparison between the parallel adder shown in Fig. 9-1 and the serial
adder of Fig. 9-8 will give some indication of the relative cost and speed
between the modes of operation. Consider again a 36-bit accumulator and a
master-clock pulse generator with a frequency of 2 MHz. Assume that the
maximum propagation time through any gate is 20 nsec and that the
settling time of a flip-flop is 50 nsec. For the parallel adder, we had to
wait three clock pulses, or 1.5 usec, to complete the addition. The serial
adder required the application of 36 clock pulses for a total time of
18 usec to complete the addition, a speed advantage of the parallel over the
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serial adder of 12 to 1. On the other hand the number of FA circuits is 36
to 1, thus the added equipment is greater than the speed advantage.
Obviously, we can increase the speed of the parallel adder considerably if
faster circuits are used and the carry propagation reduced. Circuits that add
two 36-bit numbers in 100 nano-seconds can be thus attained. The speed of
the serial adder can also be increased by increasing the frequency of the
master-clock generator. The limit on this frequency is a function of the
maximum propagation time of the flip-flops plus the combinational gates. In
this example, the next sum bit will be available after 50 nsec for the
flip-flops to settle down plus 40 nsec for the sum and carry to propagate
through two levels of gates, for a total of 90 nsec. This gives a maximum
frequency for the master-clock of 11 MHz, a bit-time of 90 nsec, and a
word-time for 36 bits of 3.24 usec. From this example one can clearly see
that although, as a general rule, serial operations tend to be slower than
parallel operations, there may be some operations that are done faster
serially if one uses high-speed circuits compared to slower circuits used in
the parallel counterpart.

9-6 ELEMENTARY OPERATIONS

The most important function of an accumulator is to add two numbers.
Other arithmetic operations can be processed using this basic operation in
conjunction with other elementary operations. Subtraction can be done by
addition and complementation, multiplication is reduced to repeated addi-
tions and shifting, and division can be processed by repeated subtractions
and shifting. The 2’s complement of a number stored in a register can be
obtained by complementing the register and then incrementing it by 1.
Logical operations on the individual bits of a register are useful for
extracting and packing parts of words. A digital computer incorporates these
elementary operations together with other operations in its instruction list.
Instructions such as multiply and divide are usually processed internally in
computer registers by repeated applications of elementary operations. How-
ever, the availability of the elementary operations to the user allows him to
specify his own sequence of repeated operations and thus extend the
processing capabilities of the machine. To save equipment, some small
computers do not include multiplication or division instructions as part of
their hardware. In this case, it is up to the user to specify in his program
the sequence of elementary operations needed for their execution.

A set of elementary operations for an accumulator register is listed in
Table 9-1. The command signals p; to py are generated by control logic
circuits and should be viewed as inputs to the accumulator for the purpose
of initiating the corresponding elementary operation. The nine control
signals are assumed to be mutually exclusive; i.e., one and only one signal
is enabled at any interval between two clock pulses.
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Table 9-1 List of elementary operations for an accumulator
Control signal Operation Symbolic designation
D, arithmetic addition A+ @B)=4
P, clear 0=4
Ps complement A) = A.
Pa logical AND “A)AB) =4
Ps logical OR AyvV®B =4
D exclusive-or A) e B)Y=4
2 shift-right i) = 4; i=1,2,...,n1
Pg shift-left (Al'l) = Al 1= 2, 3, - }
Do increment Aay+1=4
z check if zero if (4) = 0; thenz = 1

There are two

types of operations listed in the table. The unary

operations—clear, complement, shift, and increment—require only one
operand, the one stored in the A register. The binary operations-arithmetic
addition and the three logical operations—require two operands, one stored
in A and the other in B. All the operations will change the state of the A
register except the last function listed in the table (an output function).
Most of the elementary operations are self-explanatory. Arithmetic addition
of two numbers has been discussed extensively in previous sections. The
clear operation clears all flip-flops to 0. The complement operation changes
the states of all individual flip-flops. Shift registers have been discussed
previously. The increment operation increases the contents of the accumu-
lator register by one. The logical operations have their usual meaning but
they operate on individual bits of the register. For example, if the contents
of a four-bit accumulator is 0011 and the contents of the B register is
0101, the AND operation changes the contents of the accumulator to 0001,
the OR operation to 0111, and the exclusive-or to 0110. Note that the
most elementary operation of a simple transfer from register B into the
accumulator is not included in the table. This simple transfer can be
implemented by clearing the accumulator and then ORing to it the contents
of B.

A symbolic notation is given to each operation in the table. A double
arrow designates a transfer into a register. The letter 4 is used for the
accumulator register and the letter B for the register that stores the
operand received from an external unit. A letter without a subscript refers
to all n flip-flops of the register, while a subscripted letter refers to a single
flip-flop. When enclosed in parentheses, the letter refers to the contents of
the register or subregister. In order to distinguish between arithmetic plus
and logical OR, the logical operation is given the V symbol. The A
symbolizes logical AND operation. The overbar symbolizes a bit-by-bit
complementation operation. The symbolic notation of Table 9-1 conforms
with the notation introduced in Sec. 8-2 and defined in Table 8-1.
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A block diagram of the digital system that implements the elementary
operations listed in the table is shown in Fig. 9-10. The accumulator
includes a parallel A register together with its associated combinational
circuit. The register proper consists of n flipflops 4;, 4, . .., A4,
numbered in ascending order starting from the right-most position. The
inputs to the accumulator are: (1) a continuous clock pulse train for
synchronization, (2) the nine command signals p; to py with only one p;
being enabled at any clock pulse period, (3) n inputs By, By,. . ., B,
from register B, (4) n outputs A, 4,, . .., A, from register 4, and
(5) a single output z, whose output is logic-l when the contents of the
accumulator register is 0. The parallel accumulator will be partitioned into
n similar states with each stage consisting of one flip-flop 4; and its
associated combinational circuit. In subsequent discussions only one typical
stage will be considered with the understanding that an s-bit accumulator
consists of n such typical stages with similar interconnections among
neighbors. The extreme right-most and left-most stages have no neighbors
and require special attention.

B Register
z
Combinational Cpmmand
circuit signals
Py—pg
Outputs of
A Register l
A Register Clock
pulses
ACCUMULATOR

Figure 9-10 Block diagram of accumulator

9-7 ACCUMULATOR DESIGN

The implementation of each elementary operation listed in Table 9-1 is
carried out in this section. The individual combinational circuits so obtained
are incorporated into a unified system in the next section. The specific
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combinational circuits obviously depend on the type of flip-flop chosen for
the A register. We shall employ JK flipflops in the design that follows and
leave the design with other types of flip-flops for problems at the end of
the chapter.

For each elementary operation, there corresponds one and only one
command signal p; that activates it. This signal is generated by an external
control unit and is considered as an input entering each stage of the
accumulator. The presence of this input (i.e., when it is logic-1) dictates the
required change of state of the A4 register upon the occurrence of the next
clock pulse. Its absence (when it is logic-0) dictates no change of state.
Therefore, the state diagrams to be used subsequently do not list the p;
input with the understanding that the next state is conditional upon its
presence. Moreover, a binary operation takes the present values of A; and
B; and stores the result of the operation in A;. Only the A; flipflop
changes its state in response to a command signal; the corresponding bit of
B; remains unaltered. Therefore, B; is considered as an input to a single
stage and is listed as such in the state diagrams.

pq: Arithmetic Addition.

This operation has been discussed extensively in previous sections. We
shall select the binary adder circuit of Fig. 9-3 with JK flip-flops instead
of T. Since the JK flip-flop behaves as a complementing flip-flop when
both inputs are excited simultaneously, it follows that both J and K must
receive the same input received by the T flip-flop of Fig. 9-3. The input
ADD command signal can now be replaced by the symbol p,. The input
functions to the flip-flop and the output carry to the next stage are:

JA; = (BiC; + BIC)) p; (9-8a)

KA; = (BC; + BiC)) p; (9-8b)

Ci +1 = AtBl + AiCi + BiCl' (9-9)
py: Clear.

The clear command signal clears all flip-flops of the A register; in other
words, it changes the contents of the register to 0. To cause this transition
in a JK flipflop we need only apply command signal p, to the K input
during one clock pulse period. The logic diagram for this operation shown
in Fig. 9-11 is obvious and required no design effort. The input functions
are:

JA; =0 (9-10a)
KA4; =p, (9-10b)
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A;
0 1
K J
[e]
P,

Figure 9-11 Ciear
p;: Complement

The complement command signal changes the state in each flip-flop of
the A register. To cause this transition in a JK flip-flop we need to apply
command signal p; to both inputs. The logic diagram is shown in
Fig. 9-12. The input functions are:

JAI = D3 (9-1 la)
KA; =ps (9-11b)

Pt Logical AND

This operation forms the bit-by-bit logical AND between A; and B; and
transfers the result to A;. The state table and input excitation for this
operation are given in Fig. 9-13(a). The input functions are derived in the
maps of Fig. 9-13(b):

J4; =0 (9-12a)
KA,' = B;p‘; (9-12b)
and the logic diagram is shown in Fig. 9-13(c). The procedure for obtaining
the state diagram, input excitation, the simplified input Boolean functions,

and the logic diagram is straightforward and follows the procedures outlined
in Ch. 7.

Figure 9-12 Complement
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Present Next Flip-flop —B—‘— ,.EL
state Input [ state inputs
A; B; A; | 14i K4 X|X
o o | o [o x A,-{ x | x A,-{ )
Y 1 0 0 D ¢
1 0 0 X 1 JA;= 0 KA; =B
1 1 1 X o ! i
(b)
(a)
I IAi
0 1
K ]
|
o | ,
! ©)

Figure 9-13 Logical AND
pg: Logical OR
This operation forms the bit-by-bit logical OR between A4; and B; and
transfers the result to A4;. Figure 9-14 shows the state table, input excita-

tion, the map minimization, and the logic diagram for the OR elementary
operation. The input Boolean functions are:

JA; = Bps (9-13a)
KA; =0 (9-13b)

pg: Exclusive-or

This operation forms the bit-by-bit logical exclusive-or between 4; and B; and

transfers the result to 4;. The pertinent information for this operation is shown
in Fig. 9-15. The Boolean input functions are:

JA; = Bps (9-14a)
Kfli = Blp5 (9’14b)
p,: Shift-right
This operation shifts the contents of the A register one place to the

right. Clearly, this operation transfers the content of A;,; into A4; for
i=1, 2, ..., n-1, with the transfer into A4, unspecified.* The

*The data transferred to A4, when shifting right or to 4; when shifting left
determines the type of shift used. This is discussed in Sec. 9-9.
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1 0 1 X 0
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a ]
(a) 0 1
K J
e
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Figure 9-14 Logical OR
B; B;
Present Next Flip-flop 1 x| x
state  Input | state inputs
A, B | A, | 1A K4 A,-{ x| x A,-{ )
0 0 0 0 ¢
0 1 1 1 X JAi=B; KA;=B;
1 0 1 X 0
b
1 1 0 X 1 ®
| |4
(a) 0 1
K J
'

(c)

Figure 9-15 Exclusive-or
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excitation table for this operation is shown in Fig. 9-16(a). Note that
A; .1 is an input to stage i and that the next state is equivalent to the
input. The map minimization is obtained in Fig. 9-16(b) and the logic
diagram in Fig. 9-16(c), where the shift-right is executed only when
command signal p, is enabled. The input functions are:

JAi = Ai + 1P7
KA, =A;' + lp7

(o-1

5a)

(9-15b)
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4i4 4+
1 X! X
Present Next Flip-flop A: .
state  input | state inputs ! x|x| 4 1
Ai Ai“H Ai JA, KA, ']Ai_A'_';] KA _A,
=4 i— A4+
0 0 0 0 X
0 1 1 1 X ®
1 0 0 X 1
1 1 1 X 0 P Ajyy
A
v [
0 1
K J
Py —
Ajr1—
(c)
Py A, Pg A4y

Figure 9-16 Shift-right
pg: Shift-left

This operation shifts the contents of the A register one place to the left.
The design procedure here is the same as the shift-right operation with
A; 1 replacing 4;, { and will not be repeated. The logic diagram is shown
in Fig. 9-16(c), with command signal pg initiating the shift-left operation.
The input functions are similar to Eq. 9-15:

JA; =A; _ 1ps (9-162)
KA; = A; _ 1ps (9-16b)

Pg: Increment

This operation increments the contents of the A register by one; in
other words, the register behaves like a synchronous binary counter with pg
being the count command signal. In Sec. 6-5 it was shown that the flip-flop
input functions for a synchronous binary counter are:
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JA;, =KA, =py
i1 9-17)
JAi =KAi =p9°H A] i=2,3,...,n
j=1
where II is a product sign designating the AND operation and the A]'-s are
the outputs of all less significant flip-flops. The Boolean function specified
by Eq. 9-17 is implemented by one AND gate per stage. The number of
inputs in each gate is a function of the flip-flop position in the register. If
we number the position of the individual flip-flops from 1 to n starting
from the right-most element, the number of inputs to an AND gate is equal
to its position number. Thus, for stage number 2 the gate requires two
inputs, one from A4, and one from py. But the last stage requires an AND
gate with »n inputs, one from each of the previous flip-flops and one
from pgy. It is interesting to note that the maximum propagation delay with
this configuration is equal to the propagation time of only one AND gate.
This arrangement is similar to the carry look-ahead scheme discussed in
Sec. 9-3 and achieves the least waiting time for the carry te propagate
through all the stages. It is possible to decrease the number of inputs to
the AND gates if one can afford a longer propagation delay. The concept
of partitioning into similar subunits with carry look-ahead is applicable to
counting circuits as well, since a counter is a special adder that adds a
constant equal to one. The implementation of Eq. 9-17 implies no parti-
tioning; i.e., all n flip-flops form a single group. By partitioning into groups
with a smaller number of flip-flops, the number of inputs to the AND gates
is reduced. The accumulator circuit to be designed in this chapter is
purposely partitioned into n identical groups with one flip-flop per group.
Therefore a modification of Eq. 9-17 is needed to make each AND gate in
each stage similar to any other stage. This can be achieved by defining an
input signal £; into a stage and an output signal E; , | out of each stage as
shown in Fig. 9-17. In this configuration, a total of n-1 AND gates are
used, but each gate has only two inputs. The disadvantage is that the
maximum propagation delay increases considerably. It is equal to the time
required for the signal to propagate through n-1 gates. On the other hand,
it standardizes the counting circuit needed for each stage into an AND gate
with only two inputs. The flip-flop input functions for a typical stage are
easily obtained from inspection of Fig. 9-17,

JA; =E; (9-18a)

with the additional requirement that each stage generates an output E; . 4
to be used as an input for the next stage on its left.
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Ei"‘l =EiAl i=1,2,...,n-1

(9-19)
Ey =Dpo
rTTTTT T ]
: ; oCP
| |
] |
| l A3 : I 4, A,
: 0 | 0 (
| K J : K I K J
| |
| |
| |
| |
| ] |
E |
—( e J r—]
| | E3 £, \ —OE;= Py
| Stage 3 | 2
e e e e — —_ — - —

Figure 9-17 Counter circuit with carry propagation

z: Check if zero

This signal is an output from the accumulator and its function is
different from the operations considered so far. It checks the content of
the accumulator and produces an output z whose value is logic-1 when all
the flip-flops of the register contain zeros. Obviously, this can be imple-
mented with one AND gate having n inputs coming from the complement
output of each flip-flop. The propagation delay of this circuit is the time
required for the signal to propagate through this single AND gate. Again for
the sake of standardization and partitioning into » identical stages we shall
adopt the alternative implementation shown in Fig. 9-18. Here we are
splitting the n-input AND gate into n AND gates of two inputs each and
increasing the propagation delay to the time required for the signal to
propagate through n gates. Each stage will then generate an output function
Z; + 1 given by Eq. 9-20 to be used as an input for the next stage on its
left.

Z;i + 1 =ZiA;' i=1,2,...,n
Zy =1 (9'20)

Zn+1 =2z
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Figure 9-18 Chain of AND gates for checking zero content of register

98 COMPLETE ACCUMULATOR

The circuits for each individual operation derived in the last section must
be integrated to form a complete accumulator unit. The reader is reminded
that this digital unit is a multipurpose register capable of performing various
elementary operations and although we have named it accumulator, any
other name would serve as well. Now, the command signals p; to py are
mutually exclusive and therefore, their corresponding logic circuits can use
the same flip-flop. To avoid interaction among the many outputs, an OR
gate is inserted in each flip-flop unit. In other words, the logical sum of
Egs. 9-8, 9-10 to 9-16, and 9-18 is formed for each J and K input.

JA; =BCipy + BiC;py, + p3 + Bips + Bips + A; . (D7
+A4;  1ps tE;

KA; = B;Cip, + B;C;p, + p; + p3 + Bips + B;Ds
tA[,, P74 1P tE,

i

(9-21a)

(9-21b)

It is also necessary that in each stage we generate the output functions
specified by Egs. 9-9, 9-19, and 9-20.

Ci +1 = AiBi + A,-Ci + BiCi (9-22)
Ei +1 ~ EiAi (9'23)
Ziv 1 =7 9249

These output functions are generated in stage i and applied as inputs to
the next stage i+ 1. The first stage placed in the least significant position
has no neighbor on its right and must use as inputs logical values C; = O,
Ey = py, and z; = 1. Boolean functions 9-21 to 9-24 give all the
information necessary to obtain the logic diagram of each stage of the
accumulator register.
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The logic diagram of one typical stage of the accumulator register is
shown in Fig. 9-19. Again, it should be emphasized that an n-bit register is
comprised of n such stages, each interconnected with its neighbors. The
single stage has one flip-flop 4;, an OR gate in each J and K input, and a
variety of combinational circuits. There are six inputs to each stage: B; is
the input from the corresponding bit of register B, C; is the carry from the
previous stage on the right, 4;_; is the output of the flip-flop from the
stage on the right, 4;, ¢ is the output of the flip-flop from the stage on
the left, E; is the carry input from the increment operation, and z; is used
to form the output z. There are eight control inputs p; to pg, one for
each elementary operation listed in Table 9-1. There are four outputs: A4; is
the output of the flip-flop, C; +; is the carry for the next stage on the
left, E; , 1 is the increment carry for the next stage on the left, and z; , 4
is applied to the next stage on the left to form the chain for the output z.
There are three other inputs into each stage not directly related to the flow
of information: clock pulses from the master-clock generator, at least one
power supply input, and a ground terminal. This makes the total number of
input and output leads in one stage equal to 21; the entire circuit could be
incorporated into one IC chip with 21 terminals. The logic diagram is a
direct implementation of the Boolean functions listed in Egs. 9-21 to 24
and is self-explanatory.

The first stage i = 1 and the last stage i = n need special consideration
because they do not have neighbors on one side. The circuit shown in
Fig. 9-19 can be used for these two stages and, although it may seem
inefficient, it nevertheless facilitates the design to require the use of only
standard modules. Some of the terminals in these two stages require inputs
or outputs different from those specified for a typical stage. The input C;
in the first stage should be connected to O, input E; to py and z; to 1.
The output z; . ; in the last stage is a logic-l when the contents of the
A register are zero. Output £, , 1 is not of any use. Output C, , ; can be
used as an overflow indicator. Inputs 4; _; of the first stage and 4;, ; of
the last stage need special consideration during shifting. Their connections
determine the type of shift encountered.*

The three slowest functions of the accumulator are: the arithmetic
addition, the incrementing process, and the chain that forms the z output.
This is because the signals of these functions have to propagate through
combinational gates before their outputs settle to the required values. Thus,
enough time must be allowed for the carries to propagate through the
combinational circuits (2 X n gates for addition and n-1 gates for incre-
menting) before the command signal p, or p, is enabled. Similarly, out-
put z will not have the correct value until the signal propagates through
n AND gates. Only in low-speed digital systems can the designer afford to
use the elementary carry propagation circuits employed in Fig. 9-19. It was

*This subject is discussed further in the next section.
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used in this chapter for simplicity and tutorial reasons. Improvement of the
carry propagation time is required in many practical systems. This can be
done by partitioning the accumulator into groups of more than one flip-

7
| Ci
Ci+i  E —
\J'_' L
' B;
I P, add
CcP
P, clear
Py complement
p, AND
P, OR

Py exclusive-or

C< Aj 4

p,  shiftright

Py shift-left

E; increment

Figure 9-19 One typical stage of the accumulator register
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flop, with each group generating a carry for the next group. Several other
techniques can be used. In practice, one generally has an upper limit on the
time allowed for the completion of an operation. Given this constraint,
different schemes are examined to determine which will yield the speed
required with the least amount of equipment. Then the simplest and most
convenient technique is selected. It should also be pointed out that the
development of IC technology facilitates the standardization of functions
such as accumulators. General purpose registers that perform a variety of
elementary operations are available in IC form as MSI or LSI
devices (8, 9).

99 ACCUMULATOR OPERATIONS

The second operand needed for the binary operations in the accumulator is
stored in the B register. This register, quite often, is the memory buffer
register, whose function is to receive the word read from the memory unit
or to hold the word to be stored into memory. One may think of the
accumulator as a function register that accepts data read from memory and
operates on it according to a programmed sequence of command signals
generated in a control unit. Figure 9-20 helps clarify this concept. The
accumulator environment consists of the B register and the control unit.
The data for the various operations is transferred into the B register and
the results from the accumulator are transferred back into the B register.
The source and destination of data may be a memory unit, a set of

DATA
In Out

||

L B Register l

Accumulator Register

Command
signals
P — Py

Control Unit

Figure 9-20 Block diagram of accumulator and its environment
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terminals, or other registers. The sequence of operations is determined in
the control unit, which generates command signals synchronized with the
incoming data. The sequence of control signals may be either permanently
wired or stored in memory as instructions. With this coneept in mind, we
shall proceed to describe some useful functions that can be processed in the
accumulator. These processes may require either a single or a multiple
sequence of elementary operations for their execution.

Simple Transfer

The simple transfer is not included in the list of elementary operations
for the accumulator of Fig. 9-19. However, a simple transfer from reg-
ister B into the accumulator can be implemented from the two elementary
operations clear and add or clear and OR. Adding or ORing the contents of
B to zero is equivalent to a straight transfer from B to A. The transfer
from the accumulator register to B or any other register is easily
implemented since the outputs of the A register are available as outputs
from the accumulator. The transfer from any other register into the
accumulator cannot be direct if the circuit of Fig. 9-19 is used since the
inputs of the A4 register are not available as terminals. Some digital com-
puters have a limited number of registers and such a transfer is not used. In
larger systems with many other processing registers, such a transfer neces-
sitates the availability of the input terminals of the A register.

Algebraic Addition and Subtraction

So far, in the discussion of binary addition, no mention was made of the
sign of the operands. This was purposely avoided to decrease the com-
plexity of the process. We shall now show that addition and subtraction of
two signed binary numbers can be implemented in the accumulator.

The sign of a number is a binary quantity and can be stored in one
flip-flop, with plus being represented by a O and minus by a 1. We shall
use the left-most flip-flop of registers A and B to store the sign and use
the complement representation for negative numbers as shown in Sec. 8-5;
that is, negative numbers are represented either by 2’s complement or by
1’s complement.

The addition of two binary numbers with sign-complement representation
is very simple and is stated by the following algorithms.*

1. Addition with sign-2’s complement representation. The addition of
two signed binary numbers with negative numbers represented by their
2’s complement is obtained from the addition of the two numbers

*The proof of the two algorithms can be found in reference 3, Ch. 1. See also
Prob. 12-19.
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including their sign bits. A carry in the most significant (sign) bit is
discarded.

2. Addition with sign-1's complement representation. The addition of
two signed binary numbers with negative numbers represented by their
I’s complement is obtained from the addition of the two numbers,
including their sign bits. If there is a carry out of the most significant
(sign) bit, the result is incremented by 1 and its carry discarded.

Addition and subtraction with sign-magnitude representation is somewhat
more complicated and is covered in Sec. 12-5.

Numerical examples for addition with negative numbers represented by
their 2’s complement are shown below. Note that negative numbers must be
initially in 2’s complement representation, and that the sum obtained after
addition is always in the required representation.

+ 6 0 000110 - 6 1111010
+ +
+ 9 0 001001 + 0 001001
+ 15 0 001111 + 3 0000011
+ 6 0 000110 - 9 1110111
+ +
-9 1 110111 - 9 1110111
-3 1 111101 - 18 1101110

The two numbers in the four examples are added, including their sign
bit. Any carry out of the sign bit is discarded and negative results are
automatically in their 2’s complement form.

The four examples are repeated below with negative numbers represented
by their 1’s complement. The carry out of the sign bit is returned and
added to the least significant bit (end around carry).

+ 6 0 000110 - 6 1111001
+ +
+ 9 0 001001 + 9 0001001

+ 15 0 001111 :10 000010 s
1

+ 3 0000011
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+ 6 0 000110 -9 1 110110
+ +

-9 1 110110 -9 1 110110

- 3 1111100 11 101100
.

1

-~ 18 1 101101

The accumulator register can be used without modifications to add or
subtract two signed binary numbers in 2’s complement representation. For
the 1°s complement representation, an overflow flip-flop L is needed to
store the end carry. One flip-flop in each register must be reserved to
accomodate the sign of the two operands. By convention the two left-most
flip-flops 4,, and B, are reserved for the signs, while the remaining registers
store the magnitude of the operands in the chosen representation. If 2’s
complement representation is chosen, then an add-command signal p; will
complete the addition (with carry C, , ; neglected). If 1’s complement
representation is used, the end-carry-out of C, ,{ must be stored tem-
porarily in the overflow flip-flop L to determine whether the result has to
be incremented by 1. The value of C, , { is transferred to flip-flop L with
the add-command signal p;. The procedure for adding two signed binary
numbers in 1’s complement representation is as follows: apply an add-
command signal p,, check the status of the overflow flip-flop; if it is set,
increment the A register by 1 by applying a py command signal.

Subtraction of twe binary numbers can be accomplished by com-
plementing the subtrahend and adding it to the minuend.* The 1’s
complement of a number stored in the accumulator is obtained from the
application of a complement command signal ps. The sign flip-flop 4, is
also complemented, so that positive numbers change to negative and nega-
tive numbers to positive. To obtain the 2’s complement of a number stored
in the accumulator, two elementary operations are needed: the first comple-
ments the number (including the sign) and the second increments it by 1.
A different procedure can be employed if the contents of register B are to
be added to the 2’s complement of the operand stored in the accumulator.
The A register is first complemented, a signal equivalent to logic-1 is
applied to the input carry C, of the first stage, and then an add-command
signal is applied.

Subtraction of two signed numbers in complement form can be accom-
plished in one of two ways. In the first method, the subtrahend is first
transferred into the accumulator, its complement formed, and then added to

*This procedure was explained in Sec, 1-5.
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the minuend in the B register. This requires the following sequence of

elementary operations:

For 2’s complement representation:

Step Elementary operation Command

signal

1. subtrahend = B
2. 0=4 D2
3. A+ B)=> 4 D1
4. =4 D3
5. 4)+1=4 Do
6. minuend = B

4)+B)=4 p1

For 1’s complement representation:

Step  Elementary operation Command

signal

1. subtrahend = B

2. 0=4 ) 23

3. @ +B=4 P

4. A)=>4 ?s

5. minuend = B

6. “) +®B) = 4, P1

Cpv1 =L
7. L: (4)+1=4 Do

Remarks

subtrahend transferred in
clear 4

transfer subtrahend to A4
complement

form 2’s complement of
subtrahend

minuend transferred in

forms the difference in A4

Remarks

subtrahend transferred in
clear A
transfer subtrahend to A

form 1’s complement of
subtrahend

minuend transferred in

add and set overflow
flip-flop L if end-carry

forms the difference in 4

The difference formed in the accumulator may be transferred directly out
or to register B and then to the external system, or may be left in the 4
register if needed for the next operation. Note that the only variation
between the two sequences is in the step at which the incrementing
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command py is applied. An extra overflow flip-flop L is required for the
I’'s complement and only if this flip-flop is set by an end-carry is the
accumulator incremented.

A more efficient subtraction procedure results if the complement of the
subtrahend is formed in register B instead of the accumulator. In this method
the minuend is the first operand to be transferred to the accumulator; the
subtrahend is left in register B. The subtrahend in register B is then
complemented and added to the accumulator. For example, the arithmetic
subtraction of two numbers from a third, X minus Y minus Z, is implemented
with fewer steps by this procedure than by the previous method.

Comparison

An often-used function in digital data processing is the comparison of
two numbers to determine their relative magnitude. The two numbers may
be of the same or opposite signs. It is possible to design a digital circuit
with three outputs to perform this function and produce a logic-1 in one
and only one of three output terminals, depending on whether the first
number is greater than, less than, or equal to the second number,* If an
accumulator is available, the function can be implemented by the appli-
cation of a sequence of elementary operations. The relative magnitude of
two signed binary numbers X and Y may be found from the subtraction of
Y from X and checking the sign bit of the difference in A4,. If it isa 1,
the difference X — Y is negative and X < Y; if it is a O either X > Y or
X =Y. A check of the z output distinguishes between these two possi-
bilities, with z = 1 making it an equality. However, this last procedure is
valid only in the 2’s complement representation. In the 1°s complement
case, a zero may manifest itself in two forms; either by a number with all
0’s or by a number with all 1’s. Thus accumulators with 1’s complement
representation require an additional circuit for the z output in order to
detect the second type of arithmetic zero.

Shifting Operations
The elementary operations of shift-right and shift-left as defined in
Table 9-1 did not specify the data transferred to the left-most and right-

most flip-flops of the register. The information transferred to input 4; ., ;
of the nth flipflop or the input A4;_ ; of the 15t determine the type of

*See Sec. 4-6.
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shift implemented. A logical shift is one that inserts 0’s into the extreme
flip-flops. Therefore a logical shift-right command necessitates the applica-
tion of a logic-0 to terminal A;, ; in the nth stage, while a logical
shift-left requires the application of a logic-0 to terminal 4;_; of the 15t
stage. A circular shift circulates the bits around the two ends. Therefore,
for a circular left shift, one has to connect the output 4, of the nth stage
to input A; ; of the 15t stage. A circular right shift requires that out-
put 4, of the first flip-flop be connected to input A4, , ; of the last. An
arithmetic shift shifts only the magnitude of the number, without changing
its sign. This type of shift is also called scalling or shift with sign extension.
An arithmetic left shift multiplies a binary number by 2, and an arithmetic
right shift divides it by 2. Remember that flip-flop n holds the sign of the
number and that the magnitude of a negative number may be represented
in one of three different ways. In sign-magnitude representation, the arith-
metic shifts are logical shifts among the first n-1 flip-flops. In sign-2’s
complement representation, a right shift leaves the sign bit unchanged and a
left shift transfers 0’s into stage 1. In sign-1’s complement representation, a
right shift leaves the sign bit unchanged and a left shift transfers the sign
bit into the least significant bit position.*

Logical Operations

The logical operations are very useful for manipulating on individual bits
or on part of a word stored in the accumulator. A common application of
these operations is the manipulation of selected bits of the accumulator
specified by the contents of the B register. Three such functions are the
selective set, selective clear, and selective complement. A selective-set opera-
tion sets the bits of the A4 register only where there are corresponding 1’s in
the B register. It does not affect bit positions which have O’s in B. The
following specific example may help to clarify this operation.

1100 B
1010 A before

1110 A after

The two left-most bits of B are 1’s and so the corresponding bits of 4 are
set. One of these two bits was already set and the other has been changed
from O to 1. The above example may serve as a truth table from which
one can clearly deduce that the selective-set operation is just an OR
elementary operation. The selective-complement operation complements bits
in 4 only where there are corresponding 1’s in B. For example:

*The proofs of these algorithms are left for a problem at the end of the chapter.
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1100 B
1010 A before

0110 A after

Again the two left-most bits of B are 1’s and so the corresponding bits of
A are complemented. This example again can serve as a truth table from
which one can observe that the selective-complement operation is just an
exclusive-or elementary operation. The selective-clear operation clears the
bits of A only where there are corresponding 1’s in B. For example:

1100 B
1010 A before

0010 A after

Again the two left-most bits of B are 1’s and so the corresponding bits of
A are cleared to 0. One can deduce that the logical operation performed on
the individual bits is Bj4; To implement the selective-clear operation, it is
necessary to complement register B and then AND to A.

1100 B
0011 B
1010 A before

0010 A after ANDing

If register B cannot be complemented, one can use De Morgan’s theorem to
express the operation as (B; + A;)', which requires three elementary opera-
tions, complement 4, OR B to A, and complement 4 again.

The logical operations are useful for packing and unpacking parts of
words. For example, consider an accumulator register with 36 flip-flops
receiving data from a punch card with 12 bits per column. The data from
any three columns can be packed into one word in the accumulator. Other
input systems transfer data in alphanumeric code consisting of six bits per
character, so that six characters can be packed in the register. For such
data, one may want to pack or unpack the individual items for various data
processing applications. The packing of data may be accomplished by first
clearing the A register and then performing an OR operation with a single
item stored in B. If the individual items are placed in the least significant
position of B, the next operation on A requires shifting the item to the
left before ORing another item from B. To pack three columns of a card
with 12 bits in each column, one requires three OR operations and three
logical shift-left operations, with the shifting done on 12 bits at a time.
The unpacking of words requires the isolation of items from a packed
word. An individual item may be isolated from an entire word by an AND
operation (sometimes called masking) with a word in B that has all 1’s in
the corresponding bits of the item in question and 0’s everywhere else.
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9-10 CONCLUDING REMARKS

In this chapter, a multipurpose accumulator register was specified and
designed. The usefulness of such a register was demonstrated by several data
processing examples. The most common operation encountered in an
accumulator is arithmetic addition of two numbers. For this reason and
because, relatively, this is the most involved function to design, a major
portion of the chapter was devoted to this subject. To simplify the pre-
sentation, unsigned binary numbers were first considered. Only later in
Sec. 99 was it shown that the same circuit can be used to add or subtract
two signed binary numbers. Both serial and parallel adders were introduced
and their differences discussed. The serial adder was found to require less
equipment than its parallel counterpart, but, except for a few small digital
systems, most other computers employ parallel adders because they are
faster. The timing problems encountered in parallel adders as a result of the
carry-propagation delay was explained and a method for decreasing this
delay was briefly mentioned. The many possible techniques available for
high-speed parallel addition are too numerous for inclusion in this text. The
serious reader is advised to supplement this material with the references at
the end of the chapter.

A set of elementary operations was specified in Sec. 9-6. This set is
typical of operations of many accumulators found in digital computers. In
some small computers the entire arithmetic unit or a large portion of it
encompasses one such register. In larger systems, the accumulator is only a
part of the central processing unit and sometimes more than one accumu-
lator is available. In multiple accumulator systems it is customary to
abbreviate the names of the registers by a letter and a number such as Al,
A2, A3, or RI, R2, R3, etc. Although only nine elementary operations
were specified for the accumulator register in this chapter, one must realize
that many other operations could be included. Other possible operations
are: transfer from and operations with other registers, shifting by more than
one bit, add-and-shift combined operation (useful for multiplication), direct
circuits for binary subtraction, and other logical operations. These opera-
tions are not chosen arbitrarily but emerge from the system requirements.
The procedure for determining required register operations from the system
specifications is clarified in Ch. 11, where a specific digital computer is speci-
fied. From these specifications, the register operations are determined.

The accumulator register specified in Sec. 9-6 was designed in Secs. 9-7
and 9-8. Two reduction procedures were utilized to simplify the design: the
partition of the register into smaller and similar subregisters and the separa-
tion of the functions into mutually exclusive entities. The partitioning of
the n-bit register into n similar stages, and the initial separation of the logic
design for each elementary operation as outlined in Sec. 9-7, has reduced
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the design process to a very simple procedure. This methodology is basic in
digital logic design and is the most important single lesson to be learned
from this chapter. This procedure is employed again in Ch. 11. It is
demonstrated there again that the partitioning and separation techniques
simplifies logic design and facilitiates the derivation of the combinational
circuits among the various registers.

It should be pointed out that digital computers may have processing
units that operate on data different than the binary operands considered
here. Such data may be floating-point operands, binary-coded decimal
operands, or alphanumeric characters. An accumulator that operates on such
data will be somewhat different and more involved than the one derived in
this chapter. Floating-point data format was presented in Sec. 8-5 and
decimal adders are discussed in Sec. 12-2. The reader interested in the
arithmetic algorithms for these data representations is referred to Chu (3).

In Sec. 99 a few examples were presented to demonstrate the data
processing capabilities of an accumulator register. It is apparent that if these
processes are to be of any practical use, the register cannot remain isolated
from its environment. A block diagram was presented in Fig. 9-20 to help
visualize the source and destination of data and the source of command
signals for the elementary operations. Admittedly, this environment was very
loosely defined and needs further clarification. In the next chapter, this
point will be taken again and the position of the accumulator among other
registers and computer units will be clarified.

PROBLEMS

9-1. Register 4 in Fig. 9-1 holds the number 0101 and register B holds
0111.

(a) Determine the values of each S and C output in the four FA
circuits.

(b) What signals must be enabled for the sum to be transferred to
the A4 register?

(c) After the transfer, what is the content of 4 and what are the
new values of §,-S, and C,-C5?

9-2. Derive the logic diagram of a one-step and a two-step binary adder
with a JK flip-flop.

9-3.  Redraw Figs. 9-3 and 9-6 using only
(a) NAND gates
(b) NOR gates

9-4. Obtain the logic diagram of a one-step parallel adder with RS
flip-flops. Show that the number of combinational gates is about the
same as the FA in Fig. 9-1.
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9-5.

9-6.

9-7.

9-9.

9-10.

9-12.

BINARY ADDITION AND THE ACCUMULATOR Chap. 9

Design three different parallel binary subtractors to subtract the
content of B from the content of 4. Use each of the three methods
discussed in Sec. 9-2.

(a) Full-subtractors and D flip-flops.
(b) One-step subtractor with T flip-flops.
(c) Two-step subtractor with T flip-flops.

Show the logic diagram of a one-stage parallel binary adder-
subtractor circuit. Use the same combinational circuit to form the
sum or the difference, and let command signals ADD or SUB
determine whether the normal or complement output of A; is used
to form the carry or borrow for the next stage. Use D flip-flops.

A four-bit two-step adder, of which one stage is shown in Fig, 9-6,
has the following binary numbers stored in the registers. Register 4:
0101; Register B: 0111. Determine the values of A; through A4 and
Cg th.rough Cs

(a) before the AD1 command signal is applied,
(b) after the AD1 signal is applied, and
(c) after the AD?2 signal is applied.

(Assume that C; = 0, and note that the carries have no meaning
except for step b.)

The Boolean function of the carry look-ahead derived in Sec. 9-3
was for the input to the second group. Derive the carry C, for the
third group as a function of C4, A4, A5, Ag, and B4, Bs, Bg. From
this Boolean function, generalize the carry circuit needed in each
group of three flip-flops.

What is the maximum carry propagation delay for a 16-bit accumu-
lator that uses the circuit of Fig. 9-1? Assume the maximum pro-
pagation time of any gate to be 50 nsec.

In the serial adder of Fig. 9-8, the addend is 0111 and the accumu-
lator holds the binary number 0101. Draw a timing diagram showing
the clock pulses, the ADD command signal, the outputs 4; through
A4, and the output of the carry flip-flop C during the process of
addition.

Draw the logic diagram of a serial adder using D flip-flops for the
shift register, a T flip-flop to store the carry, and NOR gates for the
combinational circuit,

A 24-bit serial adder uses flip-flops and gates with maximum pro-
pagation delay of 200 and 100 nsec, respectively. The addend is
transferred from a serial memory unit at a rate of 100,000 bits per
second. What should the maximum clock-pulse frequency be and
how long would it take to complete the addition?
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9-13.

9-14.

9-15.

9-17.

9-18.

9-19.

9-20.

Design a serial counter; in other words, determine the circuit needed
for an increment elementary operation with a serial register. Note
that it is necessary to have a carry flip-flop that can be set initially
to 1 to provide the 1 bit in the least significant position.

Design a 40-bit register (using 7 flip-flops) with an increment ele-
mentary operation. Partition the register into 10 groups of four
flip-flops each and show the logic diagram of one typical group with
a carry look-ahead for the next group. Calculate the maximum
propagation time, assuming that each AND gate has a maximum
delay of 20 nsec.

An IC chip contains a four-bit accumulator with 15 operations g, to
q15. Only four terminals are available for specifying the 15 opera-
tions. Show the logic diagram of the decoder inside the chip and
tabulate the code used to specify each operation. What should be
the code when no operation is specified?

Derive the logic diagram of an accumulator with the same elemen-
tary operations as in Fig. 9-19 using

(a) T flip-flops

(b) RS flip-flops

Design one typical stage of an A register (using JK flip-flop) with
the following elementary operations:

q: 4)-1=>4 decrement
a2 (4) - (B) = 4 subtract
43 A)AB)=> 4 selective clear

(a) Perform the four different arithmetic computations in sign-2’s
complement representation of (£13) + (+7). (b) Repeat with sign-1’s
complement representation.

In the algorithm for addition with sign-2’s complement representa-
tion stated in Sec. 9-9, the effect of overflow was neglected.

(a) Using the above mentioned algorithm and a seven-bit accumu-
lator, perform the following additions: (+35) + (+40) and (-35)
+ (-40). Show that the answers are incorrect and explain why.

(b) State an algorithm for detecting the occurrence of an overflow
by inspecting the sign bits of the addend, augend, and sum.

(c) Repeat parts (a) and (b) for sign-1’s complement representation.

(a) Obtain the logic diagram of a combinational circuit that adds
three bits and two input carries 4 and B. Show that the sum
output is the exclusive-or of the input variables,

(b) Draw a block diagram of a parallel adder for adding three binary
numbers X + Y + Z stored in three registers. Use the three-bit
adder obtained in part (a).

(c) Show the sum and carries generated from the three-bit adders
during the addition of 15 + 15 + 15.
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9-21.

9-22.

9-23.

9-24.

9-25.

9-26.

9-27.

9-28.
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The binary numbers that follow consist of a sign bit in the left-most
position followed by either a positive number after 0 or a negative
number in 2’s complement after a 1. Perform the subtraction indi-
cated by taking the 2’s complement of the subtrahend and adding it

" to the minuend. Verify your results.

(2) 010101 - 000011
(b) 001010 - 111001
(c) 111001 - 001010
(d) 101011 - 100110
(e) 001101 - 001101

Repeat Prob. 9-21, assuming that the negative numbers are in 1’s
complement representation.

List the sequence of elementary operations required to perform two
subtractions; i.e., X - Y - Z. Assume that operands can be positive
or negative and that all negative numbers are in their 1’s complement
form. The operand X enters the B register followed first by Y and
then Z. Assume further that the B register can be complemented
with a control signal g. The circuit model available is the one shown
in Fig. 9-10 together with an overflow flip-flop L that accepts the
value of C,, , | during the p, add-command.

State -an algorithm for comparing the relative magnitudes of two
signed numbers stored in two registers. Do not use subtraction.
Assume that the binary numbers are represented in sign-magnitude.

Justify the algorithms stated in the text for arithmetic shift-right and
shift-left of numbers stored in a register in

(a) sign-magnitude

(b) sign-2’s complement

(c) sign-1’s complement

List the sequence of elementary operations together with their
symbolic notation for a selective-clear operation. Only the elemen-
tary operations of Table 9-1 are available.

It is necessary to design an accumulator that shifts by more than
one bit. The number of shifts is specified by a binary number stored
in a separate register. The shift command signals P, and Pg are
enabled only during one pulse period. Derive the logic diagram of
the external register. (Hint: Use the register as a binary down-
counter, enable the shift when the count is not zero, and disable
when the count reaches zero.)

List the sequence of elementary operations required to pack six
alphanumeric characters into one 36-bit word in the accumulator.
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1 0 COMPUTER ORGANIZATION

10-1 STORED PROGRAM CONCEPT

Digital systems may be classified as special or general purpose. A special
purpose digital system performs a specific task with a tixed set of opera-
tional sequences. Once the system is built, its sequence of operations is not
subject to alterations. Examples of special purpose digital systems can be
found in numerous peripheral control units one of which is, for example, a
magnetic-tape controller. Such a system controls the movement of the
magnetic tape transport and the transfer of digital information between the
tape and the computer. There exists a large class of special purpose systems
that cannot be classified as digital computers. The name ‘“‘digital computer”
is customarily reserved for those digital systems that are general purpose. A
general purpose digital computer can process a given set of operations and,
in addition, can specify the sequence by which the operations are to be
executed. The user of such a system can control the process by means of a
program, i.e., a set of instructions that specify the operations, operands, and
the sequence by which processing has to occur. The sequence of operations
may be altered simply by storing a new program with different instructions.

A computer instruction is a binary code that specifies some register
transfer operations. A program in machine code is a set of instructions that
forms a logical sequence for processing a given problem. Programs may be
written by the user in various programming languages, such as FORTRAN,
COBOL, etc. However, a program to be executed by a computer must be in
machine language; that is, in the specific binary code acceptable to the
particular computer. There are specific machine-language programs known as

310
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compilers that make the necessary translation from the user programming
language such as FORTRAN to the required machine code.

An instruction code is a group of bits that tell the computer to perform
a specific operation. It is usually divided in parts, each having its own
particular interpretation. The most basic part of an instruction code is its
operation part. The operation code of an instruction is a group of bits that
define an operation such as add, subtract, multiply, shift, complement, etc.
The set of machine operations formulated for a computer depends on the
processing it is intended to carry out. The total number of operations thus
obtained determines the set of machine operations. The number of bits
required for the operation part of the instruction code is a function of the
total number of operations used. It must consist of at least n bits for a
given 27 (or less) distinct operations. The designer assigns a bit combination
(a code) to each operation. The control unit of the computer is designed to
accept this bit configuration at the proper time in a sequence and supply
the proper command signals to the required destinations in order to execute
the specified operation. As a specific example, consider a computer using 32
distinct operations, one of them being an ADD operation. The operation
code may consist of five bits, with a bit configuration 10010 assigned to
the ADD operation. When the operation code 10010 is detected by the
control unit, a command signal is applied to an adder circuit to add two
numbers.

The operation part of an instruction code specifies the operation to be
performed. This operation must be executed on some data, usually stored in
computer registers. An instruction code, therefore, must specify not only
the operation but also the registers where the operands are to be found as
well as the register where the result is to be stored. These registers may be
specified in an instruction code in two ways. A register is said to be
specified explicitly if the instruction code contains special bits for its
identification. For example, an instruction may contain not only an opera-
tion part but also a memory address. We say that the memory address
specifies explicitly a memory register. On the other hand, a register is said
to be specified implicitly if it is included as part of the definition of the
operation; in other words, if the register is implied by the operation part of
the code.

Consider, for example, a digital computer with two accumulator registers
R1 and R2 and 1024 words of memory. Assume that the operation part of
an instruction consists of five bits and that an ADD operation has the code
10010. A precise definition of the ADD instruction can be formulated in a
variety of ways, with each specific definition requiring a unique instruction
code format and a different number of explicitly and implicitly specified
registers or operands. We shall now proceed to consider four possible
formats for an arithmetic addition instruction.
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A zero-address instruction is an instruction code that contains only an
operation part and no address part, as shown in Fig. 10-1(a). There are no
bits to specify registers and, therefore, we say that all registers are
implicitly specified. Since a binary operation such as addition requires two
operands, both of which must be available in registers, the computer must
have at least two accumulators. A possible interpretation of the instruction
code may be: When the operation code 10010 is detected by the control
unit, the contents of register R1 are added to the contents of register R2
and the sum is stored in register R2. Thus, the registers in a zero-address
instruction are implicitly included in the definition of the operation.

A one-address instruction format is shown in Fig. 10-1(b). This format
consists of a five-bit operation code and a ten-bit address. The number of bits
chosen for the address part of an instruction is determined by the maxi-
mum capacity of the memory unit used. Since each word stored must have
a specific address attached to it, there must be at least n bits available in
an address that must specify 2” distinct memory registers. In this particular
example, the memory consists of 1024 words. Therefore, 10 bits are used
for the address part of the instruction. If the operation part of the code is
an arithmetic addition, the address part usually specifies a memory register
where one operand is to be found. The register where the second operand
is to be found, and the register where the sum is to be stored, must be
implicitly specified. A possible interpretation of the instruction code whose

12345

operation
(a) Zero-address instruction

1 56 15
l1oo10foo01001010]

operation address

(b) One-address instruction

1 56 15 16 25
l1oo10fooo1000010f0001001011]
operation address-one address-two

(c) Two-address instruction

1 56 15
[1oo10J0001001111]

operation operand

(d) Instruction with one operand specified

Figure 10-1 Instruction code formats
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format is shown in Fig. 10-1(b) may be: Add the contents of the memory
register specified by the address part of the instruction to the contents of
register R1 and store the sum in register R1. The instruction code
100100001001010 shown in Fig. 10-1(b) has a five-bit operation part 10010
signifying an ADD operation and an address part 0001001010 equal to
decimal 74. The control unit of the computer must accept this bit configu-
ration at the proper timing sequence and send control signals to execute the
instruction. This involves a transfer of the address part into the memory
address register, reading of the contents of memory register 74, and arith-
metically adding these contents to the accumulator register R1.

A two-address instruction format is shown in Fig. 10-1(c). The instruc-
tion consists of an operation part and two addresses. The first 5 bits signify
an arithmetic addition operation and the last 20 bits give the address of
two memory registers. These two addresses may either specify the location
of the two operands or the location of one operand and the sum. In either
case, one register remains to be implicitly specified. A possible interpreta-
tion of the instruction code with the format shown in Fig. 10-1(c) may be:
Add the contents of the memory register specified by address-one to the
contents of the accumulator register R1 and store the sum in the memory
register specified by address-two. A three-address instruction is also possible.
In this case, three registers can be explicitly specified to give the location
of the two operands and the sum.

Another possible instruction format is shown in Fig. 10-1(d). The second
part of this instruction code specifies, not the register in which to find the
operand, but the operand value itself. A possible interpretation of this code
format may be: Add the binary operand given in bits 6 to 15 to the
contents of register R1 and store the result in R1. In this case, register R1 is
implicitly specified to hold one operand and to be the register that stores
the sum. The second operand is explicitly supplied in bits 6 to 15 of the
instruction code.

The arithmetic addition operation, as well as any other binary operation,
must specify two operands and the register where the result is stored. On
the other hand, a unary operation such as shift-right must specify one
register and possibly the number of bits to be shifted. Similarly, a simple
transfer between two registers is an operation that must specify the two
registers upon which the operation is to be performed. Thus, the number of
registers to be specified in an instruction depends on the type of operation.
The number of registers specified explicitly depends on the format chosen
by the computer code designer. Most designers have found it efficient to
use a one-address instruction format. Such computers include an accumula-
tor register in the processing unit that is invariably implied implicitly by the
operations. Computers with one-address instructions use the address part of
the instruction to specify the address of a memory register where one
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operand is to be found. The other operand, as well as the sum, is always
stored in the accumulator. The address part of a simple transfer operation
will specify explicitly one register in the address part of the instruction
code, while the accumulator is used as the second required register. Unary
operations may specify in their address part either a memory register or the
accumulator.

A flexibility for choosing the number of addresses for each operation is
utilized in computers that employ variable-length instruction codes. In these
computers, the variable length of the instruction code is determined by the
operation encountered. Some operations have no address part, some have
one address, and some have two addresses. This instruction format results in
a more efficient code assignment.

Both instructions and operands are stored in the memory unit of a
general purpose digital computer. Usually, an instruction code having the
same number of bits as the operand word is chosen, although various other
alternatives are possible. Instruction words are stored in consecutive location
in a portion of the memory and constitute the program. They are read
from memory in consecutive order, interpreted by the control unit, and
then executed one at a time. The operand words are stored in some other
location of memory and constitute the data. They are read from memory
from the given address part of the instructions. Every general purpose
computer has its own unique set of instructions repertoire. The stored
program concept (the ability to store and execute instructions) is the most
important property of a general purpose computer.

10-2 ORGANIZATION OF A SIMPLE DIGITAL COMPUTER

This section introduces the basic organization of digital computers and
explains the internal processes by which instructions are stored and
executed. The basic concepts are illustrated with the use of a simple
computer as a model. Although commercial computers generally have a
much more complicated logical structure than the one considered here, the
chosen structure is sufficiently representative to demonstrate the basic
organizational properties common to most digital computers. The organiza-
tion and logical structure of the simple computer is described by first
defining the physical layout of the various registers and functional units. A
set of machine-code instructions is then arbitrarily defined. Finally, the
logical structure is described by means of a set of register-transfer opera-
tions that specifies the execution of each instruction.

Physical Structure

A block diagram of the proposed simple computer is shown in Fig. 10-2.
The system consists of a memory unit, a control section, and six registers.
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The memory unit stores instructions and operands. The control section
generates command signals to the various registers to perform the necessary
register-transfer operations. All information processing is done in the six
registers and their associated combinational circuits. The registers are listed
in Table 10-1, together with a brief description of their function. The letter
designation is used to represent the register in symbolic relations.

Table 10-1 List of Registers in the Simple Computer

Letter Name of

designation register Function
A Accumulator general purpose processing register
B Memory-Buffer holds contents of memory word
C Program-Control holds address of next instruction
D Memory-Address holds address of memory word
7 Instruction holds current instruction
P Input-Output holds input-output information

The input-output P register is a very simple way to communicate with
the external environment. It will be assumed that all input information such
as machine-code instructions and data is to be transferred into the P register
by an external unit and that all output information is to be found in the
same register. The memory-address D register holds the address of the
memory register. It is loaded from the C register when an instruction is
read from memory, and from the address part of the I register when an
operand is read from memory. The memory-buffer B register holds the
contents of the memory word read from, or written in, memory. An
instruction word placed in the B register is transferred to the [ register. A
data word placed in the B register is accessible for operation with the A
register or for transfer to the P register. A word to be stored in a memory
register must first be transferred into the B register, from where it is
written in memory.

The program-control C register holds the address of the next instruction
to be executed. This register goes through a step-by-step counting sequence
and causes the computer to read successive instructions previously stored in
memory. It is assumed that instruction words are stored in consecutive
memory locations and read and executed in sequence unless a branch
instruction is encountered. A branch instruction is an operation that calls
for a transfer to a nonconsecutive instruction. The address part of a branch
instruction is transferred to the C register to become the address of the
next instruction. To read an instruction, the contents of the C register are
transferred to the D register and a memory read cycle is initiated. The
instruction placed in the B register is then transferred into the I register.
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Figure 10-2 Block diagram of a simple computer

Since the C and D registers frequently contain the same number, it may
seem as if one of them can be removed. Both registers are needed, however,
because the C register must keep track of the address of the next instruc-
tion in case the current instruction calls for an operand stored in a memory
register. The address of the operand loaded into the D register from the
address part of the I register destroys the address of the current instruction
from the D register.

The accumulator A register is a general purpose processing register that
operates on data previously stored in memory. This register is used for the
execution of most instructions. It is implicitly specified in binary, unary,
and memory transfer operations. The instruction I register holds the instruc-
tion bits of the current instruction. The operation part of the code is
decoded in the control section and used to generate command signals to the
various registers. The address part of the instruction code is used to read an
operand from memory or for some other function as given in the definition
of the instruction.
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Machine-Code Instructions

A list of instructions for the simple computer model is given in
Table 10-2. This list is chosen to illustrate various types of instructions and
does not represent a practical instruction repertoire. The reader may notice
that the first nine instructions are identical to the list of elementary

operations in Table 9-1 used for the accumulator register.

Table 10-2 List of Instructions for the Simple Computer

Operation
Address

Code Name part Function
0001 Add M A+ (<M>)= A
0010 OR M A V(<KM>)= A4
0011 AND M A) A (KM>)= A
0100 Exclusive-or M A) ® (KM>)=A
0101 Clear none 0=>4
0110 Complement none A =4
0111 Increment none A +1 =4
1000 Shift-right none (A; +1) = A4;
1001 Shift-left none (Ai o1 y=A4 i
1010 Input M @) = <M>
1011 Output M (KM>) =P
1100 Load M (KM>)=A
1101 Store M A) = <M>
1110 Branch unconditional M M=C
1111 Branch-on-zero M if (4) =0 then M = C

if (A) # 0 proceed to next
instruction

The code format used for the instructions consists of an operation part
and a one-address designated by the letter M. The first four instructions
represent a binary operation; one is an arithmetic addition and three are
logical operations. The address part M of the binary instructions specifies a
memory register where one operand is stored. The accumulator holds the
second operand and the sum. Instructions five through nine are unary
operations for the accumulator register and do not use the address part.
Instructions 10 through 13 consist of memory-transfer operations. The address
part of the instruction specifies a memory register; the second register is implied
implicitly. For the input and output operations, the implied register is P. For
the load and store operations, the implied register is 4.

The last two instructions are branch-type instructions. The branch-
unconditional instruction causes the computer to continue with the instruc-
tion found in memory register specified by the address part M. The
function of this instruction is to transfer the contents of the address part M
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to the C register, since the latter always holds the address of the next
instruction. The branch-on-zero instruction checks the contents of the A4
register. If they are equal to O, the next instruction is taken from memory
register whose address is given by the address part M. If the contents of the
A register are not equal to O, the computer continues with the next
instruction in normal sequence.

Instructions and data are transferred into the memory unit of the simple
computer through the P register. It is assumed for simplicity that the P
register is loaded with a binary word from an external system and that the
repeated execution of the input instruction (code 1010) transfers the words
into consecutive memory locations. To start the execution of the stored
program, the operator sets the C register to the first address and a “start”
switch is activated. The first instruction is read from memory and executed.
The rest of the instructions are read in sequence and executed in consecu-
tive order unless a branch instruction is encountered. Instructions are read
from memory and executed in registers by a sequence of elementary
operations such as inter-register transfer, shift, increment, clear, add,
complement, memory read, and memory write. The control section
generates the sequence of command signals for the required elementary
operations.

Logical Structure

Once the start switch is activated, the computer sequence follows a basic
pattern—an instruction whose address is in the C register is read from
memory and transferred to the I register. The operation part of the
instruction is decoded in the control section. If it is one with an address
part, the memory may be accessed again to read a required operand. Thus
words read from memory into the B register can be either instructions or
operands. When an instruction is read from memory, the computer is said
to be in an instruction fetch cycle. When the word read from memory is an
operand, the computer is said to be in a data execute cycle. It is the
function of the control section to keep track of the various cycles.

An instruction is read from memory and transferred to the I register
during a fetch cycle. The register-transfer elementary operations that
describe this process are:

=D transfer instruction address
(<D>) = B, ©+1=cC memory read, increment C
(B) = <D>, B)=1 restore memory word, transfer

instruction to [/ register

A magnetic-core destructive-read memory is assumed and therefore, a
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restoration of the word back to the memory register is required.* The
C register is incremented by 1 to prepare it for the next instruction.

The fetch cycle is common to all instructions. The elementary operations
that follow the fetch cycle are determined in the control section from the
decoded operation part. The binary and memory-transfer instructions have
to access the memory again during the execute cycle. The unary and branch
instructions can be executed right after the fetch cycle. In all cases, control
returns back to the fetch cycle to read another instruction. The register-
transfer elementary operations during the execute cycle for the four binary
operations are:

(M) =D ,  (I[Op]) = Decoder transfer address part
<D>) =B read operand

B) = <D> restore operand
)+ B)=>4 if operation is add

A Vv B =>4 if operation is OR

(A4) A B) = A if operation is AND

e B =>4 if operation is exclusive-or

Go to fetch cycle.

The symbol (/[M]) designates the contents of the address part M of the
I register. Only one of the binary operations listed is executed depending on
the value of (/[Op]); i.., the operation part of the I register.

When the operation code is a memory-register transfer type, the execute
cycle is described by the following elementary operations:

Input:

‘M) = D, ([Op]) = decoder transfer address

0= <D>, P =B clear memory register, transfer

word from P

(B) = <D> store word in memory register
Go to fetch cycle

Output:

amy) = b, ({[Op]) = decoder transfer address

D> =B read word

(B) = <D>, B)Y=P restore and transfer word

Go to fetch cycle

Load:

(iml) = D, (Z{Op]) = decoder transfer address

(<D>)=1B read word

(B) = <D>, B)=>4 restore and transfer word

Go to fetch cycle
*See Sec. 8-3.
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Store:

My = D, (I[Op]) = decoder transfer address

0= <D>, 4) =B clear memory register, transfer
word

(B) = <D> store word in memory

Go to fetch cycle

The input and store operations are similar, as are the output and load
operations, the difference being only that the P register is used for the
former and the A register for the latter.

When the operation code represents a unary or a branch-type instruction,
the memory is not accessed for an operand and the execute cycle is
skipped. The instruction is completed with the execution of one elementary
operation, which can occur at the same time that the instruction word is
restored back into memory during the conclusion of the fetch cycle. This
elementary operation is listed in Table 10-2 under the column heading
“function.” The unary operations are executed in the A register. The
branch-unconditional instruction causes a transfer of the address part into
the C register. The branch-on-zero instruction causes the same transfer if
(4) = 0; if (4) # 0, the address of the next instruction in the C register is
left unchanged.

The computer sequence of operations is summarized in a flow chart in
Fig. 10-3. Note that the completion of an instruction always follows a
return to the fetch cycle to read the next instruction from memory.

An Example

We shall illustrate the use of the machine-code instructions of the simple
computer by writing a program that will accept instructions or data words
from the P register and store them in consecutive registers in memory
starting from address 0. The program that will process this input informa-
tion is to be stored in memory registers starting from address 750. The
program in machine-code instructions is listed below. The mnemonic name
of the operation is entered instead of its binary code.

Memory Instruction

Location Operation Address Function
750 Input 000 Py = <M>

751 Load 750 (<750>) = 4
752 Increment A +1=4
753 Store 750 “) = <750>

754 Branch-unconditional 750 Branch to location 750
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Figure 10-3 Flow diagram for the sequence of operations in the simple
computer

The first word from the P register goes to the memory register in location
0. The instruction in location 750 is then loaded into the A register,
incremented by 1, and stored back. Thus the new contents of location 750
become: “Input 001.” The program then branches back to address 750. The
execution of the modified instruction at location 750 causes a transfer of
the second word from the P register to the memory register in location
001. The program loop is repeated again, causing consecutive input words
to be stored in consecutive memory locations.

Although this example illustrates a very simple machine-code program,
there are at least three difficulties associated with its execution. The first
difficulty is the lack of provision for terminating the process. Obviously, if
the input data goes beyond location 749, it will destroy its own program.
One solution to this problem is to provide a “Stop” instruction and stop
the computer after a programmed test. The details of such a test are left
for an exercise. The second difficulty is concerned with the problem of
initialization: if the program is used a second time, the initial address part
of the instruction in location 750 will not necessarily be 0. The third
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difficulty may be stated as a question: how is the first program that enters
other programs into the computer brought to memory? In other words,
how is the above listed program accepted from the P register if it is not
initially stored in memory? This problem is fundamental with general
purpose computers and is concerned with the initial starting procedures
referred to as “cold start.” It is solved by a procedure called ‘“boot-
strapping,” usually a manual operation done by the operator on the
computer console that loads a basic initial program into memory, which in
turn is capable of calling a more extensive program from an input device.

10-3 LARGE GENERAL PURPOSE COMPUTERS

A block diagram of a large general purpose computer is shown in Fig. 10-4.
The memory unit is usually very large and divided into modules; each
module is able to communicate with each of the three processors. The
central processor is responsible for processing data and performing arith-
metic, logical decisions, and other required processing operations. The
system control supervises the flow of information among units, with each

Central
SYSTEM Processor
CONTROL
MEMORY
MODULES
Peripheral Data Communication
] Processor Processor

Input/Output Devices Data Communication Networks

Figure 104 Block diagram of a large digital computer
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unit usually having its own control section to take care of internal func-
tions. The memory, processor, and control units are similar in small and
large systems except that the large one has more capabilities and is much
more complicated. Special equipment included in large computers, not
normally found in small ones, are processors to control the information
flow between the internal computer and external devices.

A large computer can use a range of equipment to perform input—output
functions. These include card reader and punch, paper-tape reader and
punch, teletype keyboard and printer, optical character reader, visual
display, graph plotter, and data communication networks. Some input and
output devices also provide additional storage to support the internal
memory capacity. Such devices include magnetic tapes, magnetic disks, and
magnetic drums. The purpose of the peripheral processor is to provide a
pathway for the transfer and translation of data passing between input,
output, external storage, and internal memory modules. The peripheral
processor is sometimes called a channel controller, since it controls and
regulates the flow of data to and from the internal and external parts of
the computer.

Computers with time-sharing capabilities must provide communication
with many remote users via communication lines. A separate data communi-
cation processor is sometimes provided to handle input and output data
of many communication networks operating simultaneously. Information
exchange with these devices is at so slow a rate that it is possible to service
tens or even hundreds with a single unit. Its principles of organization and
its relation to the rest of the computer are very similar to those of the
peripheral processor. However, it is necessarily more complex since it
communicates with more devices at the same time. The data communication
processor provides a communication link between each remote user and the
central processor.

Peripheral Processor

The input—output (I/O) register in the simple computer described in
Sec. 10-2 connects directly to the memory-buffer register for direct transfer
of data in and out of memory. This means that the entire computer is idle
while waiting for data from a slow input device or for data to be accepted
by a slow output device. The difference in information flow rate between
the central processor (millions of operations or transfers per second) and
that of the input—output devices (a few to few hundred-thousand transfers
per second) makes it inefficient for a large computer to have direct commu-
nication between the memory modules and external equipment. The peri-
pheral processor makes it possible for several external pieces of equipment
to be operating essentially simultaneously, providing data to and taking data
from internal storage.
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The data format of input and output devices usually differs from the
main computer format, so the peripheral processor must restructure data
words from many different sources compatible with the computer. For
example, it may be necessary to take four 8-bit characters from an input
device and pack them into one 32-bit word before the transfer to memory.
Each input or output device has a different information interchange rate. In
the interest of efficiency, it is inadvisable to devote central processor time
to waiting for the slower devices to transfer information. Instead, data is
gathered in the peripheral processor while the central processor is running.
After the input data is assembled, it can be transferred into memory using
only one computer cycle. Similarly, an output word transferred from
memory to the peripheral processor is transferred from the latter to the
output device at the device transfer rate and bit capacity. Thus the peri-
pheral processor acts as a transfer-rate buffer.

As each I/O device becomes ready to transfer information, it signals the
peripheral processor by use of control bits called ‘“flags.” With many I/O
devices operating concurrently, data becomes available from many sources at
once. The peripheral processor must assign priorities to different devices.
This assignment may be on a simple first-come, first-served basis. However,
devices with higher transfer rate are usually given higher priority.

An /O transfer instruction is initiated in the central processor and
executed in the peripheral processor. For example, the instruction I/O M,
where I/O is an input-output operation code and M is an address, is
executed in the central processor by simply transferring the contents of
memory register M to a peripheral processor register. The contents of
memory register M specify a control word for the peripheral processor to
tell it what to do.

A typical control word may have a binary code information as follows:

operation device address count

The operation code specifies input, output, or control information such as
start unit operating, rewind tape, etc. The device code is an identification
number assigned to each I/O device. Each device reacts only to its own
code number. The memory address part specifies the first memory register
where the input information is to be stored or where the output informa-
tion is available. The count number gives the number of words to be
transferred.

To continue with a specific example, let us assume that the operation
code specifies an input and that the device code specifies a card reader. The
peripheral processor first activates the unit and goes to fulfill other I/O
tasks while waiting for a signal from the card reader to indicate that it is
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ready to transfer information. When the ready signal is received, the peri-
pheral processor starts receiving data read from cards. If each column
punched in the card is transferred separately, the peripheral processor will
accept 12 bits at a time. The 12-bit character from each card column can
be immediately converted to an internal 6-bit alphanumeric code by the
peripheral processor. Characters are then assembled into a word length
suitable for memory storage. When a word is ready to be stored, the
peripheral processor “steals” a memory cycle from the central processor;
i.e., it receives access to memory for one cycle. The address part of the
control word is transferred to the memory-address register and the data
which was assembled goes to the memory-buffer register and the first word
is stored.

The address and count numbers in the control word are decreased by 1,
preparing for storage of the next word. If the count reaches O, the
peripheral processor stops receiving data. If the count is not 0, data transfer
continues until the card reader has no more cards.

A peripheral processor is similar to a computer control section in that it
sends signals to all registers to govern their operation. Among its duties are
synchronizing data transfer with the main computer, keeping track of the
number of transfers, checking flags, and making sure of data transfer to
prescribed memory locations.

It is important to note that this method of data transfer solves the
information transfer-rate-difference problem mentioned earlier. The central
processor operates at high speed independently of the peripheral processor.
The former’s operation interferes with the latter’s only when an occasional
memory cycle is requested. The slow operations needed when communicating
with input and output transfers are taken care of by the interface control
between peripheral processor and the I/O devices.

Program Interrupt

The concept of program interrupt is used to handle a variety of
problems which may arise out of normal program sequence. Program
interrupt refers to the transfer of control from the normal running program
to another service program as a result of an internally or externally
generated signal. The interrupt scheme is handled by a master program
which makes the control transfers. To better appreciate the concept, let us
consider an example.

Suppose in the course of a calculation that the computer finds it must
divide by zero (due, of course, to a careless programmer), what should be
done? It would be easy enough to indicate the error and halt, but this
would waste time. Suppose there is a flip-flop which would set whenever a
divide by zero operation occurs. The output of this flip-flop could send a
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signal to interrupt the normal running program and load into the memory-
address register the beginning address of a program designed to service the
problem. This service program would take appropriate diagnostic and correc-
tive steps and decide what to do next. The sensing of the flip-flop and the
transfer to a service program is handled by the master program and is called
a program interrupt.

There are many contingencies that demand the immediate attention of
the computer and cause a program interrupt by setting a particular flip-flop
in an interrupt register. The setting of any interrupt flip-flop results in
transfer of control to the master program. This program would then check
to see which flipflop was set, steer control to the appropriate service
program in memory and, upon completing the task, clear the flip-flop. The
master program also insures that the contents of all processor registers
remain unchanged during the interrupt so that normal processing could
resume after the interrupt service has been completed.

Program interrupts are initiated when internal processing errors occur,
when an external unit demands attention, or when various alarm conditions
occur. Examples of interrupts caused by internal error conditions are
register overflow, attempt to divide by zero, an invalid operation code, and
an invalid address. These error conditions usually occur as a result of a
premature termination of the instruction execution. The service program
determines the corrective measures to be taken.

Examples of external request interrupts are I/O device not ready, I/O
device requesting transfer of data, and I/O device finished transfer of data.
These interrupt conditions inform the system of some change in the
external environment. They normally result in a momentary interruption of
the normal program process which is continued after servicing or recording
the interrupt condition. Termination of I/O operations is handled by inter-
rupts; this is the way the peripheral processor usually communicates with
the central processor.

Interrupts caused by special alarm conditions inform the system of some
detrimental change in environment. They normally result from either a
programming error or hardware failure. Examples of alarm condition inter-
rupts are running program is in an endless loop, running program tries to
change the master program, or power failure. Alarm conditions due to
programming error result in a rejection of the program that caused the
error. Power failure might have as its service routine the storing of all the
information from volatile registers into a magnetic-core memory in the few
milliseconds before power ceases.

Data Communication

A data communication processor is an I/O processor that distributes and
collects data from many remote terminals. It is a specialized 1/O processor
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with the 1/O devices replaced by data communication networks. A
communication network may consist of any of a wide variety of devices
such as teletypes, printers, display units, remote computing facilities, or
remote I/O devices. With the use of a data communication processor, the
computer can execute fragments of each user’s program in an interspersed
manner and thus have the apparent behavior of serving many users at once.
In this way the computer is able to operate efficiently in a time-sharing
environment.

The most common means of connecting remote terminals to a central
computer is via telephone lines. The advantages of using already installed,
comprehensive coverage lines are obvious. Since these lines are narrow-band
voice channels (analog) and computers communicate in terms of signal levels
(digital), some form of conversion must be used. This converter is the
so-called Modem (from MODulator-DEModulator). The Modem converts the
computer pulses into audio tones which may be transmitted over phone
lines and also demodulates the tones for machine use. Various modulation
schemes as well as different grades of phone lines and transmission speeds
are used.

In a typical time-sharing system, the central computer is connected to
many remote users. As in the case of the multitude of I/O units, the
central computer must be able to single out terminals for singular communi-
cation. As before, each terminal is assigned a device code and is selected by
matching the code broadcast by the computer. The binary code most
commonly used for data transmission is the ANSCII seven-bit code
(Table 10-3), with an eighth bit used for parity. This code consists of 95
graphic characters that include upper and lower case alphabetic characters,
numerals zero to nine, punctuation marks and special symbols, and 33
control characters, 10 of which are used in communication control.

The control characters do the control operations necessary to route data
properly and put it into the proper format. They are grouped into three
functions: communication control, format effectors, and information
separators. The 10 communication control functions listed in Table 104
will be useful in a subsequent description of terminal operation. Format
effectors are functional characters that control the layout of printing or
display devices. They include the familiar typewriter format controls such as
backspace (BS), horizontal (HT) and vertical tabulation (VT), carriage return
(CR), and line feed (LF). Information separators are used to separate blocks
of data in a logical, hierarchical order such as sentences, paragraphs, pages,
multiple pages, etc. These standard characters may be used in any manner
the data communication designer wishes; although they are standard from a
symbolic standpoint, their functions are by no means standard.

The information sent to or received from a remote device is called a
message. Text (graphic characters) is usually prefaced by control characters.
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Control information plus text constitute a message. The length and content
of the text depends upon the application. Control information is needed to
direct the data communications flow and report its status.

A data communication processor receives information either by individual
bits in series or by a parallel transfer of all bits of a character called a
byte. A byte is usually accumulated in an input register and then trans-
ferred as one character. The data communication processor accumulates
bytes from many remote devices and builds messages by programmed pro-
cedures. It uses information tables describing the data network character-
istics supplied by the particular installation. It interprets and translates
codes for control characters but does not interpret the text transmitted.

Table 10-3 American National Standard Code for Information Interchange (ANSCII)
(formerly USASCII and ASCII)

, 0 0o o0 o0 1 1 1 1
b 0o o0 1 1 0o o0 1 1
b, 0 1 0 1 0 1 0 1
Si [ Peba BB [NCoumnf o,
b4 [Row)
0000 0 NUL DLE SP - 0 @ P ' p
0001 1 SOH DC1 ! 1 A Q a g
0010 2 STX EC2 " 2 B R b 1
001 1 3 ETX DC3 3. ¢ S ¢ s
0100 4 EOT DC4 § 4 D T d t
0101 5 ENQ NAK % s E U e u
0110 6 ACK SYN & 6 F VvV f v
0111 7 BEL ETB ' 7 G W g w
1000 8 BS CAN ( 8 H X h x
1001 9 HT EM ) 9 1 Y i y
1010]| 10 LF SUB * J Z z
1011 11 VT ESC + S | k 1
1100]| 12 FF FS , < L\ 1 !
1101 13 CR GS - = M ] m |}
1110| 14 SO RS . > N A n ~
1111 15 s Us |/ 7 0 — o DEL

The process by which contact is established with the remote terminal is
called Poll/Select. The data communication processor continuously polls all
terminals by sending the code ENQ (0000101), which asks “Are you ready
to send?”. The remote terminal may indicate its readiness in a number of
ways. If the polled unit is a simple teletypewriter, a send mode flag may be
set. In more complex terminals, buffer memories may be included within
the unit to transmit slowly gathered data at high speeds. In this case, the
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Table 10-4 Communication Control Characters

Code Binary Meaning

SOH 0000001 Start of heading

STX 0000010 Start of text

ETX 0000011 End of text

EOT 0000100 End of transmission
ENQ 0000101 Inquiry

ACK 0000110 Acknowledge

DLE 0010000 Data link escape
NAK 0010101 Negative acknowledge
SYN 0010110 Synchronous idle
ETB 0010111 End of transmission block

unit assumes a transmit ready status only after its buffer memory has been
filled with a complete message. It then waits for a poll from the data
center to activate the message transmission. If the polling signal arrives and
the terminal is not in a ready mode, it sends back a negative acknowledge
(NAK) to indicate that it is not ready. The data center is then satisfied
until the next poll. If the terminal is ready, it sends back an ACK, and
communication proceeds.

A very simple format that may be used between the data communication
processor and a remote terminal will now be given. The data communica-
tion processor establishes contact by sending the following characters, where
Y is a station address and ENQ is a control character listed in Table 10-4:

Y Y ENQ

Assuming the remote device has information to be transmitted, it sends the
following characters, where Y is its identification address and X is text:

SOH Y Y SIX X X .... X ETIX

If the data communication processor receives the data without errors, it
sends back an acknowledge character and terminates:

Y Y ACK EOT

The speed of most remote terminals (especially teletype units) is
extremely slow compared with computer speeds. This property allows multi-
plexing of many users to achieve greater efficiency in the time-sharing
systems. Multiplexing is a systematic repeated selection of multiple inputs,
which combines them into a single output. It is analogous to a multiple
position rotary switch rotating at high speed, sampling one input at a time.
This technique allows many users to operate at once and share a single
communication line while being sampled at speeds comparable to the speed
of the main computer.
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Microprogramming

It was shown in Sec. 10-2 that a computer instruction is executed
internally by a sequence of elementary operations. It is possible to derive
combinational circuits to implement the elementary operations during appro-
priate control pulses. By wiring circuits permanently to do the elementary
operations, however, the computer is limited to a fixed instruction reper-
toire prescribed by the original design.

A microprogrammed controlled computer has an independent control
over the processes dictated by the instructions. It incorporates a control
memory that holds microprograms for the interpretation of machine instruc-
tions. The microprogram specifies a sequence of elementary operations
called micro-operations. The sequence of elementary operations needed to
execute a machine instruction is not wired by unalterable circuits but
instead is specified by a set of microinstructions in the microprogram. The
usual procedure is to choose the micro-operation sequence for each
computer instruction by specifying a set of microinstructions. The micro-
programmed concept increases the flexibility of a computer in that it allows
the user to define his own instructions to fit his needs.

A microprogrammed controlled computer needs a small computing
section within the main computer to program and execute the micro-
programs. This inner computing unit replaces the control section of a
conventional stored program computer. It is usually comprised of a control
memory, input and output registers, and a control decoder. The control
memory stores the individual microinstructions, which are interpreted by the
control decoder. The most common storage media used for microprograms
is the read-only memory. This is a memory unit whose binary cells have
fixed, permanently wired values. Common algorithms are permanently stored
in the read-only memory for the required micro-operation sequences. The
control memory may also be a read—write memory, in which case any
sequence of micro-operations the user wishes to define may be programmed
in microinstructions.

A block diagram of a basic microprogrammed system is shown in
Fig. 10-5. An instruction fetched from main memory specifies the first
address of the microprogram that implements this instruction. The address
for subsequent microinstructions may come from a number of sources. A
simple way to specify the next micro instruction is to include its address
with each microinstruction. This method is suitable for well-defined
sequences of operations, where the algorithm for a certain machine instruc-
tion can be executed by consecutive micro-operations. It may be necessary,
however, to make certain microinstruction executions dependent on the
results of previous micro-operations. For this reason, the next address
encoder receives information from either the present microinstruction, the
main computer, or both,
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Figure 10-5 A generalized model of microprogram control

A microinstruction is a control word which is decoded by the control
decoder. The control decoder generates signals for the main computer to
perform micro-operations. The control word specified by the address register
appears in the control register. This control word has many possible
formats, depending on the specific microprograming scheme adopted. In
specifying the format of a control word, the following questions must be
considered:

1. How many control functions will be specified by a single memory

word?

2. How will the control functions be executed? For example, it is
possible to scan m bits of an n-bit control word sequentially or
process all the n bits concurrently.

3. How will control words be decoded?
4. How will the execution sequence be established?
5. Where will the address of the next control word be derived?

Once these and other questions have been answered, design may proceed in
exactly the same manner in which a stored program computer is designed
(see Ch.11). ‘

Most microprograms are executed by calling the first address of the
microprogram, sequencing through the micro-operations stored in the control
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memory, and then transferring back to main program control. A micro-
program is thus nothing more than a subroutine at the elementary operation
level.

10-4 CLASSES OF MACHINE INSTRUCTIONS

Instructions are represented inside the computer in binary-coded form since
this is the most efficient method of representation in computer registers.
However, the user of the computer would like to formulate his problem in
a higher-level language such as FORTRAN or COBOL. The conversion from
the user-oriented language to its binary-code representation inside the
computer can itself be performed by a computer program. This is referred
to as the compiling process; the program which performs the conversion is
called a compiler.

It would be instructive to demonstrate the process of compiling with a
simple example. Consider a FORTRAN assignment statement X = Y + Z to
be translated into the language of the simple computer described in
Sec. 10-2. This statement, being one of many in the program, is punched
on a card and entered into the computer. The FORTRAN statement is
stored in memory with an alphanumeric binary code and occupies six
consecutive character locations. The six characters are: X = Y + Z, and a
symbol used for the end of statement. The translation from the set of
characters to machine code is processed by the compiler program as follows.
First the characters are scanned to determine if the statement is indeed a
valid assignment statement. Then the characters X, Y, and Z are recognized
as variables and each is assigned a memory address. The + character is
interpreted to be an arithmetic operator and the = character as a replace-
ment operator. The compiler program translates the statement into the
following set of machine instructions:

Operation Address Binary code Function
Load 17 11000000010001 Load value of Y into Ac
Add 18 00010000010010 Add value of Z to Ac
Store 19 11010000010011 Store result in X

It is assumed that the compiler chose addresses 17, 18, and 19 for the
variables Y, Z, and X, respectively. A value entered for a variable through
an input statement, or calculated from an assignment statement, is stored in
the memory register whose address corresponds to the variable mame. The
compiler keeps an internal table that correlates variable names with memory
addresses and refers to the corresponding address when the value of the
variable is used or when the variable is given a new value. Thus, the value
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of the sum is stored in the memory register whose address corresponds to
the name X.

The binary-code instructions are the ones actually stored in memory
registers. The first four bits are derived from the operation code listed in
Table 10-3. The last 10 bits represent the address part and are obtained
from the conversion of the decimal number to its binary equivalent.

The number of instructions available in a computer may be greater than
a hundred in a large system and a few dozen in a small one. Some large
computers perform a given function with one machine instruction, while a
smaller one may require a large number of machine instructions to perform
that same function. As an example, consider the four arithmetic operations
of addition, subtraction, multiplication, and division. It is possible to
provide machine instructions for all four operations. It is also possible to
provide only the Add operation as a machine instruction, with the other
arithmetic operations being implemented by a sequence of many Add
instructions. Functions executed internally with a single computer instruc-
tion are said to be implemented by hardware. Functions implemented with
a subroutine program (i.e., a sequence of machine instructions), are said to
be implemented by software. Large computers provide an extensive set of
hardware instructions, smaller ones depend more on software implementa-
tion. Certain series of computer models possess similar external character-
istics but are different in operating speed and computer costs. The high-
speed expensive models have a large number of hardware-implemented
instructions. The low-speed, less expensive models have only some basic
hardware instructions, with many other functions being implemented by
software subroutines.

The physical and logical structure of computers is normally described in
a reference manual provided with the system. Such a manual explains the
internal structure of the computer, including the processing registers
available and their logical capabilities. It will list all hardware-implemented
instructions, specify their binary-code format, and provide a precise defini-
tion of each instruction. The instructions for a given computer can be
conveniently grouped into three major classes: (1) those that perform
operations and change data value such as arithmetic and logical instructions,
(2) those that move information between registers without transforming it,
and (c) those concerned with testing of data and branching out of normal
program sequence.

Operational Instructions

Operational instructions manipulate data in registers and produce inter-
mediate and final results necessary for the solution of the problem. These
instructions perform the needed calculations and are responsible for the
bulk of activity involved in processing data in the computer. The most
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familiar example of operational instructions are the four arithmetic opera-
tions of addition, subtraction, multiplication, and division. These are the
most basic functions from which scientific problems can be formulated
using numerical analysis methods. Although implemented by hardware
instructions in most computers, division and sometimes multiplication are
implemented by software in some small computers. Arithmetic instructions
require two operands as input and produce one operand as output. If the
memory registers containing all three operands are specified explicitly, a
three-address instruction is needed. This instruction may take the form:

Add M, M,, M,

where the mnemonic name Add represents the operation code and M,, M,,
Mj; are the three addresses of the operands. The execution of this instruc-
tion requires three references to memory in addition to the one required
during the fetch cycle. The elementary operations to implement the instruc-
tions are:

<M,>)=>B read 1st operand

<M;>)=B, (B)=4 read 2nd operand, transfer 1st to 4
“@+@®B =>4 form the sum in the processor
4)=1B transfer sum for storage

(B) = <M;> store sum in 3rd register

For simplicity, a nondestructive memory unit has been assumed, and the
transfer of the address parts from the instruction register to the memory-
address register have been omitted. Most computers use a reduced number
of explicit memory registers in the instruction format and assume that some
of the operands use implict registers as discussed in Sec. 10-1 and
Prob. 10-2.

Hardware algorithms for processing machine multiplication and division
require three registers. The B register is used for holding one operand; the
A register, for executing repeated additions or subtractions; and a third
register, for storing the second operand and/or the result. The third register
is sometimes called the MQ-register because it holds the multiplier during
multiplication and the quotient during division. These two arithmetic
instructions require a large number of successive elementary operations of
additions and shifts, or subtractions and shifts, for their execution. When
the computer central control decodes the operation part of such a lengthy
instruction, it is customary for it to transfer a special control signal to a
local control section within the arithmetic unit. This local controller
supervises the execution of the instruction among the arithmetic registers
and then transfers back a signal to the central control upon completion of
the instruction execution. (See Sec. 12-6.)

The four basic arithmetic operations are said to be binary because they
use two operands. Unary and ternary arithmetic operations are also possible.
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The square root of a number is a unary operation because it needs only
one operand. A function such as 4 + B - C is a ternary operation because it
uses three operands, 4, B, and C, to produce a result equal to the product
of the second and the third operand added to the value of the first. The
square root function is well known to occur in many scientific problems,
and the above-mentioned ternary function occurs repeatedly in matrix mani-
pulation problems. Most computers perform these two function by software
means. Some high-speed computers find it convenient to include such
operations in hardware instruction. The disadvantage involved in the added
equipment is offset by the gain obtained from the added speed provided by
the direct implementation.

The data type assumed to be in the processing registers during the
execution of arithmetic instructions is normally specified implicitly in the
definition of the instruction. An arithmetic instruction may specify fixed-
point or floating-point data, binary or decimal data, single-precision or
double-precision data. It is not uncommon to find a computer with four
types of Add instructions such as Add binary integer, Add floating-point,
Add decimal, or Add double-precision.

Fixed-point binary numbers are assumed to be either integer or fractions;
negative numbers are represented in registers by either sign-magnitude, 1’s
complement, or 2’s complement. Floating-point arithmetic instructions
require special hardware implementation to take care of alignment of frac-
tions and scalling of exponents. Some computers prefer to use software
subroutines for the floating-point operations to reduce the amount of
circuits in the processor. Decimal data are represented by a binary code,
with each decimal digit occupying four flip-flops of a register. Computers
oriented towards business data processing applications find it more con-
venient to have arithmetic instructions that operate on decimal data. The
number of bits in any computer register is of finite length and therefore,
the results of arithmetic operations are of finite precision. Some computers
provide double-precision arithmetic instructions where the length of each
operand is taken to be the length corresponding to two computer registers.

There are many other operational-type instructions not classified as arith-
metic operations. The common property of such instructions is that they
transform data and produce results which conform with the rules of the
given operation. The logical instructions AND, OR, etc., are operational
instructions that require two input operands to produce a value for the
output operand. Bit-manipulation instructions such as bit-set, bit-clear, and
bit-complement transform data in registers according to the rules discussed
in Sec. 99. Unary operations such as clear, complement, and increment are
operational instructions that require no operand from memory and, there-
fore, do not use the address part of the instruction code. The shift
instruction can utilize the part of the instruction code normally used to
specify an address for storing an integer that specifies the number of places



336 COMPUTER ORGANIZATION Chap. 10

to be shifted. Other operational instructions are those concerned with
format editing operations such as code translation, binary to decimal
conversion, packing and unpacking of characters, and editing of data as, for
example, during the preparation of output characters to a printer.

Inter-Register Transfer Instructions

Inter-register transfer instructions move data between registers without
changing the information content. These instructions are essential for input
and output movement of data and serve a necessary function before and
after operational instructions. These instructions must specify a source and
a destination register. The information at the source is invariably assumed
to remain undisturbed. However, the previous information at the destination
register must be destroyed after the transfer in order to accomodate the
new information. An inter-register transfer instruction requires two addresses
for its specification when the source and destination are both memory
registers. However, the source or destination can be specified implicitly if
they are chosen to be processor registers. A memory-to-memory inter-
register transfer instruction is of the form:

Move M, M,

where “Move” is a mnemonic name for the transfer operation code, M, is
the address of the source register, and M, is the address of the destination
register. This instruction can be implemented with a destructive-read type of
memory as follows:

Read:
<M,>)=B read source register
(B) = <M,> restore word ‘
(KM,;>) remain in B register
Write:
0= <M,> clear destination register
(KM ,>) are still in B register
(B) = <M,) store word in destination register

This two-address move instruction can be split into two one-address instruc-
tions. The first instruction loads the source information into a processor
register; the second stores it in the destination register. These instructions
were defined in the simple computer of Sec. 10-2 as

Load M,
Store M,

One-address computers move information from and to memory registers
by load and store instructions. If the processor contains many registers, a
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load and a store instruction must be provided for each register, since
processor registers are specified implicitly in the definition of the operation.
An alternative method for specifying transfers between a memory register
and one of a number of processor registers is an instruction format with a
register-designate field. Thus, an instruction of the form:

Store M, R

where “‘Store” is an operation code, M is a memory address, and R is a
binary number specifying one of the processor registers, will cause a transfer
from the designated processor register to the designated memory register.
The register-designate field R within the instruction format can be used to
specify transfers between processor registers. An instruction of the form:

Transfer R,, R,

where “Transfer” is an operation code, R, a binary number that specifies the
source register, and R, another binary number that specifies the destination
register, will cause a transfer from the designated source register to the
designated destination register.

Registers in the control unit and those associated with instruction
sequencing are usually not available for transfer manipulation by pro-
grammable instructions. For example, the B, C, D, and I registers of the
simple computer of Sec. 10-2 are used for internal control only. They are
not available directly for manipulation with machine instructions. Only
memory, processor, input, and output registers are normally directly speci-
fied in inter-register transfer instructions. However, it should be realized that
computer instructions specify a function and in order to execute this

function, it is necessary to move information in control registers. For

example, the instruction
Add M

specifies the function
@A)+ (<M>) = A

Yet, to perform this function internally, the computer must perform the
register transfers which are part of the fetch cycle and those necessary for
reading the operand from memory. Only then is the specified function
executed.

Test and Branch Instructions

Computer instructions are normally stored in consecutive memory
registers and executed sequentially. This is accomplished, as explained in
Sec. 10-2, by incrementing the address stored in the program-control
register during the fetch cycle so that the next instruction is taken from
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the next memory register when execution of the current instruction is
completed. This type of instruction sequencing uses a counter to calculate
implicitly the address of the next instruction. Although this method is
employed in practically all computers, it is possible also to have a computer
with an explicit next-instruction scheme. By this method, the program-
control register is eliminated. Instead, the address of the next instruction is
explicitly specified in the present instruction. As an example, consider the
two-address instruction:

Add M,, M,

with M, specifying an operand and M, specifying the address of the next
instruction, rather than an operand. The function of the instruction may be
defined to be (<M,>) + (4) = A, which requires the following elementary
operations for its execution:

dM ) =D transfer address of operand

(<D>) =B read operand

B)=><D>B)+4)=>4 restore word, add to A
To fetch the next instruction from memory, the computer must proceed to
use the second address M, as follows:

dM]) =D transfer address of next instruction
<D>)=B read instruction
B)=<D> B)>1I restore word, transfer instruction to 7 register

The new instruction, together with the address of the one following it, is
now stored in the instruction register.

When the implicit counting instruction sequence method is used, the
computer must include branch instructions in its repertoire to allow for the
possibility of transfer out of normal sequence. The simplest branch instruc-
tion is the unconditional, which transfers control to the instruction whose
address is given in the address part of the code. The unconditional, as well
as one-conditional branch instruction, were illustrated in the simple
computer of Sec. 10-2. Conditional branch instructions allow a choice
between alternative courses of action, depending on whether certain test
conditions are satisfied. The ability of branching to a different set of
instructions as a result of a test condition on intermediate data is one of
the most important characteristics of a stored program computer. This
property allows the user to incorporate logical decisions in his data
processing problem.

Test conditions that are usually incorporated with a computer instruction
repertoire include comparisons between operands to determine the validity
of certain relations such as equal, unequal, greater, smaller, etc. Other useful
test conditions are associated with the relative magnitude of a number to
check if it is positive, negative, or zero. Counting the number of times a
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program loop is executed is a useful test for branching out of the loop.
Other typical test conditions encountered in digital computers are: input
and output status bits, such as device ready or not ready; processor status
error bits, such as overflow after an arithmetic addition; and status of
console switches set by the operator. These status bits are stored in
flip-flops and tested by conditional branch instructions.

The usual code format of a conditional branch instruction is of the
form:

Branch-on-condition M

where “Branch-on-condition” is the mnemonic for the binary operation code
which specifies the condition implicitly. When the condition being tested is
satisfied, a branch to the instruction at address M is made. The program
continues with the next consecutive instruction in sequence when the
condition is not satisfied. Some typical conditional branch instructions are:

Branch to M if (4) > 0.

Branch to M, if (<M,>) < (A).

Branch to M if (X) = 0; where X is a processor register.
Branch to M if the overflow indicator is on.

These conditional branch instructions are executed by transferring the
address part M (M, in example 2) from the instruction register to the
program-control register if the test condition is satisfied. Otherwise, the
address of the next instruction stored in the program-control register
remains unaltered.

It is possible to have different definitions for the conditional branch
instruction. For example, the branch to the instruction at address M may
be made if the test condition is not satisfied. It is also possible to have a
two-address branch instruction such as:

Branch on zero M;, M, If (4) = 0 Branch to M,
If (4) # 0 Branch to M,

It is also possible to have zero-address branch instructions. These instruc-
tions are called skip-type instructions. Their function is as follows: If the
test condition is satisfied, the next instruction is skipped, otherwise the
next instruction in sequence is executed. Consider the following three
consecutive instructions:

Skip-on-zero accumulator

Branch-Unconditional M,  (This instruction is executed if (4) # 0)
Add M, (This instruction is executed if (4) = 0)

The first is a skip instruction which has no address part. If the condition of the
skip instruction is satisfied, the next instruction is skipped and the contents of
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< M, > are added to the accumulator. If the condition is not satisfied, program
control is transferred to the instruction at address M,.

A very important branch instruction that any computer must provide is
associated with entering and returning from subroutines. A subroutine is an
independent set of consecutive instructions that performs a given function.
During normal execution of a program, a subroutine may be called to
perform its function with a given set of data. The subroutine may be called
many times at various points of the program. Every time it is called, it
executes its set of instructions and then transfers control back to the main
program. The place of return to the main program is the instruction whose
address follows the address of the instruction that called the subroutine.
This address was in the program-control register just prior to the subroutine
transfer. These concepts can be clarified with the following example.
Consider a main program stored in memory starting from location 200, and
a subroutine located in locations 500 to 565. “Enter-Subroutine” is a
mnemonic name for an operation code that calls a subroutine whose first
instruction is found in the address part of the calling instruction.

Main Program

instruction
location operation address
200 Enter-subroutine 500
201 Add 351
253 Enter-subroutine 500
254 OR 365
etc.
Subroutine
location instruction
500 first instruction of subroutine

565 Exit from subroutine (last instruction)
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The instruction in location 200 calls a subroutine located at address 500.
The execution of this instruction causes a branch to location 500 and theh
control continues sequentially to execute the instructions of the subroutine.
When the last instruction in location 565 is decoded, the control unit
interprets the operation code whose mnemonic name is “Exit from Sub-
routine” as a branch instruction back to the main program at location 201,
the location following the instruction that called the subroutine. When the
main program reaches location 253, the process of entering and returning
from the same subroutine is repeated again, except that now the return
address is to location 254. The “Exit from Subroutine” instruction must
know to branch back to location 201 the first time and to location 254
the second time. The simplest method for providing the return address is to
store the contents of the program-control register (which holds the address
of the next instruction) in some temporary register before leaving the main
program and entering the subroutine. This temporary register may be a
reserved memory register, a reserved processor register, or the memory
register prior to the subroutine program (location 499 in this example). One
possible way to execute the two subroutine branch instructions with ele-
mentary operations is:

Enter-subroutine M:
agmMn=c O=x
Exit from subroutine: (no address part)

@x=cC

where [ is the instruction register, C is the program-control register, and X
is a reserved processor register used implicitly for subroutine transfers.

10-5 CHARACTER MODE

A character is a binary code that represents a letter, a decimal digit, or a
special symbol. A computer is said to operate in the character mode when
characters are the units of information stored in memory registers or used
during manipulation of information in the processor. This is in contrast
with computers that operate in the word mode where the unit of informa-
tion stored in registers represents data types used during the solution of
numerical problems. The processing of scientific problems requires data
types such as integers or floating-point operands, which require large word
lengths, normally in excess of 24 bits. The processing of business data or
other symbol-manipulation applications requires the use of character codes
whose unit of information consists of six or eight bits.

The type of instructions useful in word mode operation is discussed in
Sec. 10-4. Character mode instructions are similar, except that the unit of
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information is a character instead of a word. The arithmetic operations are
the ones most often used when operating in the word mode. The instruc-
tions most commonly used in character mode are editing operations and
data movement of character strings. The following are some applications
that require character mode representation and operation.

1. The input and output data employed by the human user is invariably
in decimal form and in a special format such as integer, floating-point,
etc. The user-oriented data is represented in computer registers with a
character code. It has to be translated into the corresponding data
type used internally in computer registers.

2. A user-oriented programming language such as FORTRAN consists of
letters, decimal digits, and special symbols. The computer stores the
input program in memory registers as string of characters.

3. The translation from the user’s program to machine-language code
requires many character mode operations on the input character string.

4. Business and commercial applications deal with names of people,
names of items, identification numbers, and similar information,
represented in computer registers with a character code. The pro-
cessing of such information requires a variety of character mode
operations,

The differences between the needs of scientific computation and business
data processing brought about the design and production of specialized
computers oriented toward either word or character mode representation
and operation. Later computer models, recognizing some common character-
istics and needs of the two modes, have incorporated both types in one
machine. Computers may be grouped in four categories according to their
representation and use of basic units of information such as words and
characters.

1. Word machine. This type of computer can operate only in the word
mode. Memory and processor register lengths are fixed; an instruction
always specifies an entire word. This type of machine is usually called
a “scientific computer.” However, character mode operations are
needed during input, output, and translation of user-oriented programs.
These operations are usually manipulated by indirect and inefficient
means using the existing word-oriented instructions.

2. Character machine. This computer type uses a length of memory and
processor registers equal to the number of bits used to represent a
character. Data is stored as a string of characters and is referenced
from memory by specifying the address of the first character in the
string and some indication as to the last character. Last character




Sec. 10-6 ADDRESSING TECHNIQUES 343

indication may be the address of the last character in the string, a
character count, or, for variable-length data, a mark in one bit of the
character code that designates end of data. This type of machine uses
decimal arithmetic with a four-bit code to represent a decimal digit
(the remaining bits of the character code are either removed or used
for other purposes). Instruction codes have their operation part in one
character; addresses are placed in succeeding character locations in
memory. Data execution is usually accomplished through manipulation
of one character at a time. This type of machine is usually called a
“business-oriented computer.”

3. Word machine with character mode. This type of computer is
basically a word machine, except that character mode representation
and operation is also provided. The memory and processor registers
are of fixed word length but may, for character mode, be considered
as storing, a fixed number of distinguishable characters. For example, a
computer with a word length of 48 bits and a character code of 6
bits can store eight characters in a single word. Character mode
instructions have in their address part, in addition to the bits
specifying the address of a word, a three-bit character designation field
that specifies a character within the word.

4. Byte machine. A byte is a unit of information eight bits long. It can
represent a variety of different information items depending on the
particular operating mode of the computer. The various units of
information are chosen to represent multiples of bytes, their length is
recognized by the type of instruction used. For example, data may be
represented as follows:

decimal digit hailf byte or four bits
alphanumeric character one byte or eight bits
binary integers two bytes for single precision

four bytes for double precision
binary floating-point numbers eight bytes

Instructions may be of variable length, with the operation code occupying
one byte. The number of addresses belonging to the instruction is
determined from the type of operation code and may be from no-address
to possibly two or three. Word-oriented instructions will normally use
fixed-length binary numerical data. Character mode instructions may use
variable-length decimal data or character strings.

10-6 ADDRESSING TECHNIQUES

The sequence of operations that implement a machine instruction has been
divided in Sec. 10-2 into an instruction fetch cycle and a data execute
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cycle. The instruction is read from memory during the fetch cycle and
placed in the instruction register. During the execute cycle, the operand (if
needed) is read from memory and the instruction is then executed. If no
operand is needed, the instruction is executed without a second reference to
memory. To describe some additional features used to determine the address
of operands, the sequence of operations needed during the execute cycle is
more conveniently subdivided into two phases: the data-fetch and the
instruction-execution. The instruction-execution phase consists of those
operations that execute the instruction after the operands are available. The
data-fetch phase is responsible for the selection of memory registers used
for data when the instruction is executed. It is skipped for those instruc-
tions that do not use memory registers for data, but may otherwise consist
of a fairly involved sequence of elementary operations. The data-fetch phase
considered so far consists of one reference to memory for reading or storing
an operand. This phase becomes somewhat more complicated when the
computer uses certain addressing techniques such as indirect and relative
addressing.

Indirect Address

Added to the operation part of an instruction may be a second part
designated as the address part M. However, the binary field M may some-
times designate an operand or the address of an operand. When the second
part of the instruction code is the actual operand, as in Fig. 10-1(d), the
instruction is said to have an immediate address, or a literal designation.
When the address part M specifies the address of an operand, the instruc-
tion is said to have a direct address. This is in contrast with a third
possibility called indirect address, where the field M designates an address of
a memory register in which the address of the operand is found. It is
customary to use one bit in the instruction code, sometimes called a tag or
a mode bit, to distinguish between a direct and an indirect address.
Consider for example the instruction code format shown in Fig. 10-6. It
consists of a four-bit operation code, a five-bit address part M, and an
addressing mode bit. The mode bit is designated by d and is equal to O for
a direct address and to 1 for an indirect address. The operation code of the

Load d M
[1100[1fo0010]
operation T address

Mode: d = 0 for direct
d=1

for indirect

Figure 10-6 Instruction code format with mode bit
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H M Uni ; address in
em nit i
Address in binary —, | o r decimal

01001 {0000111101 {9

01000 8

Memory address 00111 7

register

(D) 00110 6

00101 5

00100 4

00011 3

op. [d] M 00010 {0000001001 2
Instruction Register

00000 0

Memory buffer
register

(B)

Accumulator
Register
(4)

Figure 10-7 Example to demonstrate indirect addressing

instruction specifies a load function. The mnemonic designation which has
been used for such an instruction with the mode bit equal to O is:

Load M
When the mode bit is a 1, it is customary to write the instruction as
Load * M

where * stands for indirect. The function of this instruction can be specified
in symbolic notation as

(KM>)=> A for direct address
KKLM>)>)= 4 for indirect address

(KM>) is a symbol for the contents of the memory register whose address
is M. It follows that the symbol shown for the indirect address is the
contents of the memory register whose address is (<M >).

The indirect address instruction requires two references to memory to
fetch an operand. The first reference is needed to read the address of the
operand; the second is for the operand itseif. This can be demonstrated
with an example using the numerical values of Fig. 10-7 to implement the
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load instruction specified in Fig. 10-6. For the direct mode, d = 0 and the
A register receives the contents of memory register 2, which is 0000001001.
For the indirect mode as shown, d = 1 and the content of memory register
2 is the address of the operand. This address is 9 and therefore the A4
register receives the contents of memory register 9, which is 0000111101.

The indirect load instruction requires the following sequence of elemen-
tary operations after the fetch cycle:

Content of registers when a change occurs

1. (M) = D (D)  =00010 = (20

2.(<D>)=B (<2>)=0 (B) = 0000001001
3.(B)=<D> (<2>) = 0000001001

4. (B[M]) = D (D) = 01001

5.(<KD>) =B (<9>) =0 (B) = 0000111101
6. (B) = <D> (<9>) = 0000111101

7.(B) = A4 (4) = 0000111101

Steps 1 to 6 encompass the data-fetch phase; step 7 executes the
operation. The above sequence performs the following elementary
operations:

Step 1 transfers the address part of the instruction register to the
memory-address register.

Step 2 reads the word into the memory-buffer register. This word
contains the address of the operand.

Step 3 restores the word to the memory register.

Step 4 transfers the address part of the memory-buffer register (address
of operand) to the memory-address register.

Step 5 reads operand into the memory-buffer register.
Step 6 restores the word to the memory register.

Step 7 transfers operand to accumulator register.
Relative Address

A relative address does not indicate a storage location itself, but a
location relative to a reference address. The reference address may be a
special processor register or a special memory register. When the address
field M of the instruction code is relative address, the actual address of the
operand, called the effective address, is calculated during the data-fetch
phase as follows:

effective address = contents of a special register + M
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The effective address may be considered to consist of the sum of a base
address and a modifier address. It is convenient to distinguish between two
types of relative addressing schemes. The first type contains a base-address
register within the control unit and allows the field M to designate the
modifier address. The second type uses the field M as the base address and
a special register, called an index register, acts as the modifier. We shall
proceed to explain in more detail the second type and then return to the
first.

An index register is a processor or a special memory register whose
contents are added to the address part M to obtain the effective address of
the operand. A digital computer may have several index registers. It is
customary to include an index-register field in the instruction code to
specify the particular one selected. This is demonstrated in the instruction-
code format shown in Fig. 10-8. The index-register field designated by X
may specify register X1, X2, or X3 with the binary code 01, 10, or 11,
respectively. The code X = 00 specifies no index register. The effective
address is obtained during the data-fetch phase with the elementary
operation

(I[M]) + (Xn) =D n=12,3
When X = 0, no index register is used and the effective address is M:
(um)) =D

Fig. 109 shows a numerical example for implementing the load instruction
whose format is specified in Fig. 10-8. The relative address is M = 2, and
the index-register field specifies X2. The contents of X2, equal to 7, are
added to M to obtain the effective address 9. The contents of memory
register 9 are read from memory and transferred to the 4 register.
Computers with index registers contain a variety of instructions which
manipulate with these registers. The instructions are similar to the ones
considered in Sec. 104 and can be divided into the usual three classes:

1. Inter-register transfer instructions load and store contents of index
registers. Some examples are:

Load-index M, X KM>) = Xn
Load-index immediate M, X M = Xn
transfer A4 to index register X ) = Xn

where X designates the index-register field and M is the address part
of the instruction.

2. Operational-type instructions involve the usual unary and some binary
operations. Some examples are:

Clear X 0= Xn
Increment X Xn) +1 = Xn
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Decrement X (Xn) - 1= Xn
Increment X, D (Xn) + D = Xn
Decrement X, D (Xn) -D = Xn

where the field D contains explicitly the amount of incrementing or
decrementing requested. The increment or decrement instructions with-
out the D field specify the value of 1 implicitly.

3. Test and branch instructions usually test for a specific value of Xn to
cause a branch. Some examples are:

Branch on index zero M, X if (Xn) =0, then M = C
Decrement and branch on zero M, X Xn) -1 = Xn
if Xn) =0, then M= C

The convenience of indexing can be demonstrated by a simple example. The
addition of 100 numbers stored in consecutive memory registers starting
from location 50 can be implemented with 100 instructions as follows:

Clear A
Add 50
Add 51
Add 52

Add 149

The use of index registers reduces the number of instructions considerably.
The following program uses one index register to increment the effective
address and another to count the number of additions.

Location Instruction Function
200 load immediate 100, X1 100 = X1
201 load immediate 50, X2 50 = X2
202 clear 4 0=4
203 add 0, X2 KX2>)+ @) =>4
204 increment X2 (xX2) +1= X2
205 decrement and x1)-1=1Xx1
branch on zero 207, X1 if (X1) = 0, then 207 = C
206 branch 203 203 = C
207 next instruction

The second type of relative addressing scheme uses a base-address register
in the control unit and allows M to designate an address relative to it. As
an example, consider an instruction format having seven bits for the address
part. Suppose that the memory unit consists of 16,384 words, each of
which require an address of 14 bits. The seven least significant bits of the
address can be specified by M, while the most significant seven bits can be
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Load X M
{ 1100 [10] 00010]

operation I address

Index
Register
specification

Figure 10-8 Instruction code format with index register

Memory Registers

D] 01001 0000111101 (9

X34 00000

X2]1 00111

X1j10011

0000001001]2

B[0000111101|

A|5000111101J

Figure 10-9 Example to demonstrate the use of index registers

stored in the base register. During the data-fetch phase, the effective address
is obtained by combining the two parts. The value of the base register can
be changed by the program with an instruction like:

Load base register M M = Base register

And this value remains unchanged as long as instructions reference operands
relative to the present value of the base register.

Relative addressing with base registers is useful in small computers for
increasing the range of memory when only a limited number of bits are
available for the address part of the instruction. Some large computers use
base registers for the ease of relocation of programs and data. When
programs and data are moved from one sector of memory to another, as
required in multiprogramming and time-sharing systems, the address field of



350 COMPUTER ORGANIZATION Chap. 10

instructions do not have to change. Only the value of the program base
register requires updating.

Summary of Addressing Characteristics

Various addressing techniques have been introduced throughout this
chapter. The addressing characteristics that have been mentioned are now
summarized in order to place the various possibilities in their proper
perspective. '

1. Implication: An address may be implied explicitly by a binary code
as part of the instruction or implicitly in the definition of the
operation,

2. Number: The number of explicit addresses in an instruction may vary
from zero to three or more.

3. Type: In general, the address field of an instruction refers to an
address of a memory register. An instruction may also have other
address fields for the purpose of designating a unique index or pro-
cessor register, or for choosing an input or output unit.

4. Mode: An immediate address is in reality not an address as such
because the address field is taken to be the actual operand. An
instruction with a direct address mode considers the address field as
the address of an operand. The address field of an indirect mode
instruction specifies an address of a memory register where the address
of the operand is found.

5. Relative: An indexed instruction uses its address field as a base
address to be modified by the contents of an index register. An
address field relative to a base-address register specifies a certain
number of lower significant bits of the effective address, while the
base-address register holds the remaining higher significant bits.

6. Resolution: The address field of an instruction may specify a
memory register consisting of a number of bits referred to as a word.
Word sizes may range from 12 to 64 bits. The address field may
specify a memory register that stores one alphanumeric character. A
character length may be six or eight bits. The address field could, if
necessary, have a resolution to each bit of memory.

7. Length: The length of the memory register specified by the address
field or fields may be fixed, as is usually the case in word-oriented
instructions. It may be made variable by specifying the first and last
memory register or the first memory register and a register count.
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PROBLEMS

A digital computer has a memory unit with a capacity of 4096
words, each 36 bits long. The instruction set consists of 55
operations.

(a) What is the minimum number of bits required for the operation
code?

(b) How many bits are needed for the address part of an
instruction:

(c) How many instructions can be packed in one word using zero-
address, one-address, or two-address instruction formats?

(d) What happens to the fetch-cycle when two instructions are
packed in one word?

Using the simple computer structure of Fig. 10-2 with two accumu-
lator registers R1 and R2, list the register transfer elementary opera-
tions needed to execute the instructions given in Fig. 10-1 and
defined in the text. Assume a magnetic-core memory.

Given: the simple computer structure of Fig. 10-2. For each instruc-
tion defined below:

(a) give a possible one-address format and a definition of the
instruction in your own words, and

(b) list the sequence of elementary operations required to execute
the instruction, Assume a nondestructive read-out memory.

(1) Add input and store: (4) + (P) = <M>

(2) Three-way test: If (4) > 0, branch to <M>; if (4) <0,
skip next instruction; if (4) = 0, proceed to next instruc-
tion in sequence.

(3) Increment memory register: (KM>) +1 = <M>

(4) Replace: (4) = <M> and (KM>) = 4

(5) Skip; if not, increment: If (KM >) = 0, skip next instruc-
tion; if (KM>) # 0, then (KM>) + 1 = <M>,

Give the binary code of each instruction in location 750-754 of the
program listed in Sec. 10-2. Use the operation code of Table 10-2
and a memory unit with a capacity of 2048 words of 15 bits each.

Assume that subtraction can be done in the simple computer by
using the 2’s complement representation (see Sec. 9-9). Modify the
machine-code program of Sec. 10-2 to include a test for the number
of input words entered from the P register and branch to a “Stop”
instruction after this number reaches 750.

A memory unit has a capacity of 65,536 words of 25 bits each. It
is used in conjunction with a general purpose computer.

(a) What is the length of the memory-address and buffer registers?
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(b) How many bits are available for the operation part of a one-
address instruction word?

(c) What is the maximum number of operations that may be used?

(d) If one bit of a binary integer word is used to store the sign of
a number, what are the largest and smallest integers that may be
accommodated in one word?

Explain the difference between a central processor, a peripheral
processor, and a data communications processor.

Specify a format of a control word for the peripheral processor that
requests input of 256 blocks from a magnetic-tape unit starting from
block number 150. A block of storage contains 128 characters of six
bits each.

List the sequence of operations necessary to service a program
interrupt.

Give a character format between a data communication processor
and a data communication network for a transmission of text from
the computer to the remote terminal.

What is the difference between:

(a) a computer program and a microprogram?

(b) a computer instruction and a microinstruction?

(c) an operation and a micro-operation?

(d) an elementary operation and a micro-operation?

Give the mnemonic and binary instructions generated by a compiler
from the following FORTRAN program. (Assume integer variables.)

SUM =0

SUM =SUM + 4 + B
DIF =DIF + C
SUM = SUM + DIF

Repeat Prob. 10-12 using the following FORTRAN program:

IF (ALPHA + BETA) 10,20,10
10 X = A .AND. B .OR. C .AND. D
20 X = NOT. X

List the sequence of machine instructions needed to multiply two
integers. Use a repeated additional method. For example, to multiply
5 X 4, the computer performs the repeated addition 5 + 5 + 5 + 5.

Write a program; that is, list the sequence of machine instructions to
perform an arithmetic addition of two floating-point numbers.
Assume that each floating-point number occupies two consecutive
memory registers; the first stores the exponent and the second stores
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the coefficient. Assume to have a computer with the instructions
listed in Table 10-2 in addition to the following two instructions:

Branch on positive accumulator M.

Subtract M; ie., (4)—(<M>)=4
List the sequence of elementary operations needed to execute the
single machine instruction described by the function:

KM, >) © (KM >) = <M3>
List the sequence of elementary operations needed to execute the
single machine instruction whose mnemonic notation is

Move Ml’ MQ, M3
The instruction performs the following functions:

KM >)=><M,>

KM, +1>)=><M, + 1>

KMy +2>)=><Mp +2> etc, up to

KMy + M3 >)=> <My + My >
Let a “Branch to Subroutine” instruction with an address part M be
executed as follows:

C)y=<M>

M+1=C
Explain in your own words how the branching is done and where

the beginning of the subroutine is. Suggest an instruction for
returning to main program.

Give the sequence of elementary operations when both an index
register and indirect address are specified in one machine instruction.
The instruction is first modified by an index register (if specmed)
and then checked for an indirect address.
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COMPUTER
1 1 DESIGN

11-1 INTRODUCTION

This chapter presents the design of a small general purpose digital computer
starting from its functional specifications and culminating in a set of
Boolean functions. Though this computer is simple, it is far from useless.
Its scope is quite limited when compared with commercial electronic data
processing systems yet it encompasses enough functional capabilities to
demonstrate the design process. It is suitable for construction in the labora-
tory with ICs, and the finished product can be a useful system capable of
processing digital data.

The computer consists of a central processor unit, a memory unit, a
teletype input unit, and a teleprinter output unit. The logic design of the
central processor unit is given in detail. The other units are assumed to be
available as finished products with known external characteristics.

The design of a digital computer may be divided into three interrelated
phases: system design, logic design, and circuit design. System design
concerns the specifications and the general properties of the system. This
task includes the establishment of design objectives, design philosophy,
computer architecture, required operations, speed of operation, and
economic feasibility. The specifications of the computer structure are
translated into Boolean functions by the logic design. The circuit design
specifies the components and circuits for the various logic circuits, memory
circuits, electromechanical equipment, and power supplies. The computer
hardware design is greatly influenced by the software system, which is
normally developed concurrently and which constitutes an integral part of

358
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the total system. The design of a digital computer is a formidable task that
requires thousands of man-hours of effort. One cannot expect to cover all
aspects of the design in one chapter. Here we are concerned with the
system and logic design phases of a small digital computer whose specifica-
tions are formulated somewhat arbitrarily in order to establish a minimum
configuration for a very small, yet practical machine. The procedure out-
lined in this chapter can be useful in the logic design of more complicated
systems.
The design process is divided into six phases:

(1) the decomposition of the digital computer into registers which
specify the general configuration of the system,

(2) the specifications of machine instructions,
(3) the formulation of a timing and control network,

(4) the listing of the sequence of elementary operations needed
to execute each machine instruction,

(5) the listing of the elementary operations to be executed on each
register under the influence of control signals, and

(6) the derivation of the input Boolean functions for each flip-flop in
the system and the Boolean functions necessary to implement the
control network.

The step-by-step execution of the operations specified in (4) and (5) are
described by register transfer relations. The Boolean functions obtained in
step (6) culminate the logic design. The implementation of these functions
with logic circuits and flip-flops has been covered extensively in previous
chapters.

11-2 SYSTEM CONFIGURATION

The configuration of the computer is shown in Fig. 11-1. Each block
represents a register except for the memory unit, the console, the master-
clock generator, and the control logic. This configuration is assumed to be
unalterable. In practice, however, the designer starts with a tentative system
configuration and constantly modifies it during the design process. The
name of each register is written inside the block, together with a letter in
parentheses. This letter represents the register in symbolic register transfer
relations and in Boolean functions. The number in the lower right corner of
each block is the number of flip-flops in the register. The configuration
shown in Fig. 11-1 is very similar to the one used for the simple computer
introduced in Sec. 10-2.
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Figure 11-1 Block diagram of digital computer

We shall restrict the design of the computer to the parts that can be
described by Boolean functions. Certain parts do not fall in this category
and are assumed to be available as finished products with known external
characteristics. These parts are the master-clock generator, the memory unit,
the console and its associated circuits, and the I/O devices. The rest of the
computer can be constructed with flip-flops and combinational circuits.

Master-Clock Generator

The master-clock generator is a common clock-pulse source, usually an
oscillator, which generates a periodic train of pulses. These pulses are
fanned-out by means of amplifiers and distributed over the space the system
occupies. Each pulse must reach every flip-flop at the same instant. Phasing
delays are needed intermittently so that the difference in transmission
delays is uniform throughout. The frequency of the pulses is a function of
the speed by which the system operates. We shall assume a frequency of
1 megahertz (one pulse every microsecond) for this computer. This fre-
quency is lower than what is normally used in commercial systems but was
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chosen here for the sake of having a round number and to avoid problems
of circuit propagation delays.

The Memory Unit

The memory unit is a magnetic-core random-access type with a capacity
of 4096 words of 16 bits each. The capacity was chosen to be large enough
for meaningful processing. A smaller size may be used if the computer is to
be constructed in the laboratory under economic restrictions. Twelve bits of
an instruction word are needed to specify the address of an operand, which
leaves four bits for the operation part of the instruction.

The memory unit communicates with the address register and the buffer
register in the usual manner. The memory cycle control signal, designated
by m, initiates one read-write cycle for a period of 4 microseconds. During
the first 2 microseconds, the word located at the specified address given by
the address register is accessed, read into the buffer register, and erased
from memory (destructive reading). During the following 2 microseconds,
the word in the buffer register is stored in the location specified by the
address register. Thus, a word can be read during the first half of the cycle
and restored during the segond half if the contents of the address and
buffer registers are undisturbed. On the other hand, a new word can be
stored in the addressed location if the address register is undisturbed but
the contents of the buffer register are changed prior to the beginning of the
second half of the memory cycle. To simplify the logic design, we shall not
distinguish between a read and a write cycle. The memory cycle control
signal (m) will automatically initiate a read followed by a write as described
above. A timing diagram for the memory unit is shown in Fig. 11-4.

The Console

The computer console consists of switches and indicator lamps. The
lamps indicate the status of registers in the computer. The normal output
of a flipflop applied to a lamp (with amplification if needed) causes the
light to turn on when the flip-flop is set and to turn off when it is cleared.
The purpose of the switches is to start, stop, and manually communicate
with the computer. The function of the switches and the circuits they drive
is explained later; their purpose can be better understood after some aspects
of the computer are better known. The design of the computer is carried
out without regard to these switches. In Sec. 11-8 we shall enumerate the
console switches, explain their function, and specify the circuits associated
with their operation.
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The Input-Output Device

The I/O device is not shown in Fig. 11-1. It is assumed to be an
electromechanical unit with a typewriter keyboard, a printer, a paper tape
reader, and a paper tape punch. The input device consists of either the
typewriter or the paper tape reader, with a manual switch available for
selecting the one used. The output device consists of the printer or the
paper tape punch, with another switch available for selecting either device.
The unit uses an eight-bit alphanumeric code and has available two control
signals indicating the status of the I/O devices. These control signals activate
flip-flops, which indicate whether the device is busy or ready to transfer
information. Registers are physically mounted in the unit and are used to
store the input and output eight-bit information and control signals. The
specifications for the I/O registers are given in more detail below.

The Registers

The part of the digital computer to be designed subsequently is
decomposed into register subunits which specify the configuration of the
system. Any digital system that can be decomposed in this manner can be
designed by the procedure outlined in this chapter. Very briefly, this
procedure consists of first obtaining a list of all the elementary operations
to be executed on the registers, together with the conditions under which
these operations are to be executed. The list of conditions is then used to
design the control circuits, while the input Boolean functions to registers
are derived from the list of elementary operations.

Using the frame of reference from Ch. 10, the register configuration of
Fig. 11-1 is an absolute necessity. The following paragraphs explain why the
registers are needed and what they do. A list of the registers and a brief
description of their function can be found in Table 11-1. Registers that
hold memory words are 16 bits long. Those that hold an address are
12 bits long. Other registers have different numbers of bits depending on
their function.

Memory-Address and Memory-Buffer Registers

The memory-address register (D) is used to address specific memory
locations. The D register is loaded from the C register when an instruction
is to be read from memory and from the 12 least significant bits of the
B register when data is to be read from the memory. The memory-buffer
register (B) holds the word read from or written into memory. The opera-
tion part of an instruction word placed in the B register is transferred to
the 7 register and the address part is left in the register for further
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manipulation. A data word placed in the B register is accessible for opera-
tion with the A register. A word to be stored in memory must be loaded
into the B register at the beginning of the second half of a memory cycle.

Table 11-1 List of Registers

Letter Number

Desig- of

nation Name Bits Function
A Accumulator Register 16 multipurpose register
B Memory-Buffer Register 16 holds centents of memory word
C Program Control Register 12 holds address of next instruction
D Memory-Address Register 12 holds address of memory word
E Extended flip-flop 1 extra flip-flop for accumulator
F Fetch flip-flop 1 determines fetch or execute cycle
G Sequence Register 2 sequence counter
I Instruction Register 4 holds current operation
S Start-Stop flip-flop 1 determines if computer is running

or stopped

N Input Register 9 holds information from input device
U Output Register 9 holds information for output device

Program Control Register (C)

The C register is the computer’s program counter. This means that this
register goes through a step-by-step counting sequence and causes the
computer to read successive instructions previously stored in memory. When
the program calls for a transfer to another location or for skipping the next
instruction, the C register is modified accordingly, thus causing the program
to continue from a different location in memory. To read an instruction,
the contents of the C register are transferred to the D register and a
memory cycle is initiated. The C register is always incremented by 1 right
after the initiation of a memory cycle that reads an instruction. Therefore,
the address of the next instruction after the one presently being executed is
always available in the C register.

Accumulator Register (4)

The A register is a multipurpose register that operates on data previously
stored in memory. This register is used to execute most instructions and for
accepting data from the input device or transferring data to the output
device. This register, together with the B register, make up the so-called
“arithmetic” unit of the computer. Although most data processing systems
include more registers for this unit, we have chosen to include only two in
order not to complicate the computer. With two registers in the arithmetic
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unit, only addition and/or subtraction can be implemented directly. Other
operations, such as multiplication and division, are implemented by a
sequence of instructions that form a subroutine.

Instruction Register (/)

The I register holds the operation bits of the current instruction. This
register has only four flip-flops, since the operation part of the instruc-
tion is four bits long. The operation part of an instruction is transferred
to the [ register from the B register, while the address part of the
instruction is left in the B register. The operation part must be taken out
of the B register because an operand read from memory into the B
register will destroy the previously stored instruction. (The operation part
of the instruction is needed to determine what is to be done to the
operand just read.)

Sequence Register (G)

This register is a sequence counter that produces timing signals for the
entire computer. It is a two-bit counter-decoder excited by clock pulses
with a period of 1 usec. The four outputs of the decoder supply four
timing signals each with a period of 4 psec and a phase delay between two
adjacent signals of 1 usec. The relation between the timing signals and the
memory unit is clarified in Sec. 11-4.

E, F, and S Flip-Flops

Each of these flip-flops is considered a one-bit register. The £ flip-flop is
an extension of the A register. It is used during shifting operations, receives
the end-carry during addition, and otherwise is a useful flip-flop that can
simplify the data processing capabilities of the computer. The F flip-flop
distinguishes between the fetch and execute cycles. When F is 0, the word
read from memory is treated as an instruction. When ¥ is 1, the word is
treated as an operand. S is a start-stop flip-flop that can be cleared by
program control and manipulated manually from the console. When S is 1,
the computer runs according to a sequence determined by the program
stored in memory. When S is 0, the computer stops its operation.

Input and Output Registers

The input register (V) consists of nine bits. Bits 1 to 8 hold alpha-
numeric input information; bit 9 is a control flip-flop. The control bit is
set when new information is available in the input device and cleared when
the information is accepted by the computer. The control flip-flop is
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needed to synchronize the timing rate by which the input device operates
compared to the computer. The normal process of information transfer is as
follows: Initially, the control flip-flop Ny is cleared by a *“Start” pulse from
the console. When the teletype key in the input device is struck, an
eight-bit code character is loaded into the NV register and N, is set. As long
as Ny is set, the information in the N register cannot be changed by
striking another key. The computer checks the control bit; if it is a 1, the
information from the N register is transferred into the accumulator register
and Ny is cleared. Once Ny is cleared, new information can be loaded into
the NV register by striking a key again.

The output register (U) works similarly but the direction of information
flow is reversed. A “Start” pulse from the console clears the control bit
Uy. The computer checks the control bit; if it is a O, the information from
the accumulator register is transferred into U; to Uz and the control bit
U, is set. The output device accepts the coded information, prints the
corresponding character, and clears the control bit Us. The computer does
not load a new character into the output device when U, is set because
this condition indicates that the output device is in the process of printing
the character.

11-3 MACHINE INSTRUCTIONS

The number of instructions available in a computer and their efficiency in
solving the problem at hand is a good indication of how well the system
designer foresaw the intended application of the machine. Medium- to
large-scale computing systems may have hundreds of instructions, while most
small computers limit the list to 40 or 50. The instructions must be chosen
carefully to supply sufficient capabilities to the system for solving a wide
range of data processing problems. A minimum requirement of such a list
should include a capability for storing and loading words from memory, a
sufficient set of arithmetic and logical operations, some address modification
capabilities, unconditional branching and branching under test conditions,
register manipulation capabilities, and I/O instructions. The instruction list
chosen for our computer is believed to be close to the absolute minimum
required for a restricted but practical data processor.

The formulation of a set of instructions for the computer goes hand in
hand with the formulation of the formats for data and instruction words. A
memory word consists of 16 bits. A word may represents either a unit of
data or an instruction. The formats of data words are shown in Fig. 11-2.
Data for arithmetic operations are represented by a 15-bit binary number
with the sign in the 16th bit position. Negative numbers are assumed to be
in their 2’s complement equivalent. Logical operations are performed on
individual bits of the word, with bit 16 treated as any other bit. When the
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sign magnitude (negative numbers in 2’s complement)

16 | 151141131211 (109 |8 7161|543 2 1

(a) Arithmetic operand

logical word

16 | 1514113 12|11 | 10| 9 8 i 7 6|5 4 3 2 1

(b) Logical operand

character character

N

16 |15 {14113 (1211 {10 9 (8| 7| 6] 5|4 ]3]2 1

(c) Input/output data
Figure 11-2 Data formats

computer communicates with the I/O device, the information transferred is
considered to be eight-bit alphanumeric characters. Two such characters can
be accommodated in one computer word.

The formats of instruction words are shown in Fig. 11-3. The operation
part of the instruction contains four bits; the meaning of the remaining
twelve bits depends on the operation code encountered. A memory-reference
instruction uses the remaining 12 bits to specify an address. A register-
reference instruction implies a unary operation on, or a test of, the 4 or E
register. An operand from memory is not needed; therefore, the 12 least
significant bits are used to specify the operation or test to be executed. A
register-reference instruction is recognized by the code 0110 in the
operation part. Similarly, an input-output instruction does not need a
reference to memory and is recognized by the operation code 0111. The
remaining 12 bits are used to specify the particular device and the type of
operation or test performed.

Only four bits of the instruction are available for the operation part. It
would seem, then, that the computer is restricted to a maximum of 16
distinct operations. However, since register-reference and input-output
instructions use the remaining 12 bits as part of the operation code, the
total number of instructions can exceed 16. In fact, the total number of
instructions chosen for the computer is 23.

Out of the 16 distinct operations that can be formulated with four bits,
only 8 have been utilized by the computer. This is because the left-most bit
of all instructions (bit 16) is always a 0. This leaves open the possibility of
adding new instructions and extending the computer capabilities if desired.
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The 23 computer instructions are listed in Tables 11-2, 11-3, and 11-4.
The mnemonic designation is a three-letter word and represents an abbrevia-
tion intended for use by programmers and users. The hexadecimal code
listed is the equivalent hexadecimal number of the binary code used for the
instruction. A memory-reference instruction uses one hexadecimal digit (four
bits) for the operation part; the remaining three hexadecimal digits (twelve
bits) of the instruction represent an address designated by the letter M. The
register-reference and input-output instructions use all four hexadecimal
digits (16 bits) for the operation. The function of each instruction is
specified by symbolic notation that denotes the machine operation that it
executes. A further clarification of each instruction is given below, together
with an explanation of its utility.

ANDto A

This is a logical operation that performs the AND operation on corres-
ponding pairs of bits in A and the memory word and leaves the result in
A. This instruction, together with CMA instruction (see Table 11-3) that
performs the NOT logical operation, supply a sufficient set of logical
operations to perform all the binary operations listed in Table 2-5.

ADD to A

This operation adds the contents of 4 to the contents of the memory
word and transfers the sum into A. The sign bit is treated as any other bit

operation address

16 [ 15114 [ 13 12|11} 10} 9 8 7 6| 5| 4 3 2 1

(a) Memory-reference instruction

code 0110 type of unary operation or test

16 | 15114 13| 12|11 10] 9 8 | 7 6| 5| 4 3 2 1

(b) Register- reference instruction

code 0111 type of input-output operation or test

—

16 |15 |14 | 1312 {11} 10| 9 8 7 6 51 4 3 2 1

(c) Input/output instruction

Figure 11-3 Instruction formats
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Sec. 11-3
Table 11-2 Memory Reference Instructions
Hexa-
decimal
Mnemonic Code Description Function
AND M 0 AND to A (KM> AU =A4
ADD M 1 add to A (KM>)+ ) = A, cary = E
ISZ M 2 increment and skip next (KM>) + 1 = <M>;if
instruction if zero (KM>)+1=0then(C)+1=C
STO M 3 store A A)=<M>
BSB M 4 branch to subroutine 5000 + (O) = <M> M+ 1=>C
BUN M 5 branch unconditionally M=C
Table 11-3 Register Reference Instructions
Hexa-
decimal
Mnemonic Code Description Function
NOP 6000 no operation
CLA 6800 clear 4 0=A4
CLE 6400 clear £ 0=F
CMA 6200 complement 4 A4) =4
CME 6100 complement E (E)=E
SHR 6080 shift-right A)=EE=4,,:U; ;D
=4;i=1,...,15
SHL 6040 shift-left “,)=EE) =A,;4; )
=A;i=2,...,16
ICA 6020 increment 4 4)+1=4
SPA 6010 skip next instruction if(4,,)=0then(C) +1=C
if A is positive
SNA 6008 skip next instruction if (A4,4) =1then (C) +1=C
if A is negative
SZA 6004 skip next instruction if (4) =0 then(C) +1=C
if A is zero
SZE 6002 skip next instruction if () =0then(C) +1=C
if E is zero
HLT 6001 halt 0=3S

according to the 2’s complement addition algorithm stated in Sec. 9-9. The
end-carry out of the sign bit is transferred to the F flip-flop. This instruc-
tion, together with register-reference instructions, is sufficient for program-
ming any other arithmetic operation such as subtraction, multiplication, or
division.* This instruction can be used for loading a word from memory

*The sequence of operations needed to perform subtraction is enumerated in

Sec. 99.



366 COMPUTER DESIGN Chap. 11

Table 11-4 Input-Output Instructions

Hexa-
decimal

Mnemonic Code Description Function

SIN 7800 skip next instruction if Ny =1then(C) +1=C
if input control is a 1

INP 7400 transfer from input device (W, _,) =4, - ;0= N,

SOT 7200 skip next instruction if Uy =0then (C) +1=C
if output controlisa 0

ouT 7100 transfer to output U, _d=U _xl=1y,
device

into the accumulator by first clearing the A4 register with CLA (see
Table 11-3). The required word is then loaded from memory by adding it
to the cleared accumulator.

ISZ: Increment and Skip if Zero

The increment and skip instruction is useful for address modification and
for counting the number of times a program loop is executed. A negative
number previously stored in memory at address M is read by the ISZ
instruction. This number is incremented by 1 and stored back into memory.
If, after it is incremented, the number reaches zero, the next instruction is
skipped. Thus at the end of a program loop one inserts an ISZ instruction
followed by a branch unconditionally (BUN) instruction to the beginning of
the program loop. If the stored number does not reach zero, the program
returns to execute the loop again. If it reaches zero, the next instruction
(BUN) is skipped and the program continues to execute instructions after
the program loop.

STO: Store A

This instruction stores the contents of the A register in the memory
word at address M. This instruction and the combination of CLA and ADD
are used for transferring words to and from memory and the 4 register.

BSB: Branch to Subroutine

This instruction is useful for transferring program control to another
portion of the program (a subroutine) that starts at location M + 1. When
executed, this instruction stores the address of the next instruction (of the
main program) held in register C into bits 1 to 12 of the memory word at
location M. It also stores the operation code 0101 (BUN) into bits 16-13 of
the same word in location M. The contents of the address part M plus 1
are transferred into the C register to serve as the next instruction to be
executed (the beginning of the subroutine). The return to the main program
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from the subroutine is accomplished by means of a BUN M instruction placed
at the end of the subroutine, which transfers control to location M and,
through it, back to the main program.

BUN: Branch Unconditionally

This instruction transfers control unconditionally to the instruction at the
location specified by the address M. This instruction is listed with the
memory-reference instructions because it needs an address part M. However,
it does not need a reference to memory to read an operand, as is required
by the other memory-reference instructions.

Register-Reference Instructions

The register-reference instructions are listed in Table 11-3. Of the 13
instructions, most are self-explanatory. Each register-transfer instruction has
an operation code of 0110 (hexadecimal 6) and contains a 1 in only one
of the remaining 12 bits. The skip instructions are used for program control
conditioned on the sign of the 4 register or the value of the £ flip-flop. To
skip the next instruction, the C register (which holds the address of the
next instruction) is increased by 1 so that the next instruction read from
memory is two locations down from the location of the present (skip)
instruction. The halt instruction is usually placed at the end of a program
and its execution stops the computer by clearing the start-stop S flip-flop.

Input-OQutput Instructions

These instructions are listed in Table 11-4. They have an operation code
of 0111 (hexadecimal 7) and each contains a 1 in only one of the
remaining 12 bits. Two of these instructions (SIN and SOT) check the
status of the control flip-flop to determine if the next consecutive instruc-
tion is executed. This next consecutive instruction will normally be a
Branch (BUN) back to the previous SIN or SOT instruction so the
computer remains in a two-instruction loop until the control flip-flop
becomes a 1 in the input register or 0 in the output register. The control
flipflop is changed by the external device when it is ready to send or
receive new information. So when the SIN instruction detects that the
input-register has a character available (Vg = 1) or when the SOT instruc-
tion detects that the output register is empty (Us = 0), the next instruc-
tion in sequence (BUN) is skipped and an INP or an OUT instruction
(placed after the BUN instruction) is executed.

Instructions and data are transferred into the memory unit either
manually by means of console switches or from the input paper tape
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reader. A 16-bit instruction or data word can be prepared on paper tape in
two columns of eight bits each. The first punched column represents half of
the word and the second column supplies the remaining bits of the word.
The two parts are packed into one computer word and stored in memory.
Normally, instructions and data occupy different parts of memory, with a
halt instruction terminating the instruction sequence. To start the computer,
the operator loads the first address of the program from console switches
into the C register and activates a ‘“start” switch. The first instruction is
read from memory and executed. The rest of the instructions are executed
in consecutive order unless a branch or a skip instruction is encountered.

114 TIMING AND CONTROL

The timing for the entire computer is controlled by the master-clock
generator, whose clock pulses are applied to all flip-flops in the computer.
The clock pulse period is 1 usec but the memory cycle time is 4 usec.
While the memory is busy during its cycle, four clock pulses are available
to activate registers and execute required elementary operations. The
purpose of the G register is to supply four distinct signals during a memory
cycle. This register is a two-bit counter-decoder circuit* that generates the
timing signals for the control unit. These timing signals are designated by ¢,
ty, 3, and t3 and are shown in Fig. 11-4. Each timing signal is 1 usec long
and occurs once every 4 psec. We are assuming that triggering of flip-flops
occurs during the trailing edge of the clock pulse and that the memory
cycle control signal initiates a memory cycle also on the trailing edge of a
pulse. The relation between the timing signals and the memory cycle is
demonstrated in the timing diagram of Fig. 11-4. A memory cycle is
initiated at the trailing edge of a memory cycle control signal designated by
m. During the first 2 usec of a memory cycle, reading takes place; i.e., the
word whose address is specified by the D register is read into the B register
and erased from memory. The word in the B register settles to its final
value at least 0.2 usec prior to the termination of signal 7,. During the
second half of the memory cycle, writing takes place; i.e., the contents of
the B register are stored in the word whose address is specified by the D
register. While the memory is busy reading and writing a word, timing
signals 7o-f; are used to initiate elementary operations on computer

registers.
Certain timing relations must be specified for the memory unit in order

to synchronize it with the timing signals used for registers. As mentioned
before, the memory cycle control signal m initiates a read cycle which is
always followed by a write cycle. To be able to transfer information into

*The design of counter-decoder circuits is covered in Sec. 7-6.
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Figure 11-4 Computer timing signals

the address and buffer registers simultaneously with signals #o and 7, we
specify that the memory unit has to wait at least 100 nsec before using the
outputs of these registers at the beginning of the read cycle, as well as at
the beginning of the write cycle. This implies that the propagation delay of
flip-flops can be at most 100 nsec. It is further assumed that the word read
from memory during the read cycle settles to its final value in the buffer
register not later than 1.8 usec after the memory cycle control signal is
applied.

The digital computer operates in discrete steps and elementary operations
are performed during each step. An instruction is read from memory and
executed in registers by a sequence of elementary operations. When the
control receives an instruction, the operation code is transferred into the /
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register. Logic circuits are required to generate appropriate control signals
for the required elementary operations. A block diagram of the control
logic that generates the signals for register operations is shown in Fig. 11-5.
The operation part of the instruction in the 7 register is decoded into eight
outputs go-q7; the subscript number being equal to the hexadecimal code
of the operation. The outputs of the G register are decoded into the four
timing signals #o-f3 , which determine the timing sequence of the various
control functions. The status of various flip-flops and registers is sometimes
needed to determine the sequence of control. The block diagram of
Fig. 11-5 is helpful in visualizing the control unit of the computer when
the register operations are derived during the design process.

The start-stop S flip-flop is shown going into the G register as well as
the timing decoder. All elementary operations are conditioned on the timing
signals. The timing signals are generated only when S = 1. When § = 0, the
control sequence stops and the computer halts. The S flip-flop can be set
or cleared from switches in the computer console, or cleared by the HLT
(halt) instruction. We shall assume that when S is set by a “start” switch,
signal 7o is the first to occur; and when S is cleared by a “stop™ switch,
the current instruction is executed before the computer halts.

I Register

Operation
Decoder

9 — 4

Control .
Output control signals

Sta.tuts of Logic —— for elementary operations
registers on registers
Network
t 0o—1!3
s Timing
Decoder
G Register

e—

Figure 11-5 Block diagram of control logic
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11-5 EXECUTION OF INSTRUCTIONS

Up to now, the system design of the computer has been considered. We
have specified the register configuration, the set of computer instructions, a
timing sequence, and the configuration of the control unit. In this section,
we start with the logic design phase of the computer. The first step is to
specify the elementary operations, together with the control signals, needed
to execute each machine instruction. The list of elementary operations
needed for each register will be derived in Sec. 11-6. In Sec. 11-7 we shall
translate the elementary operations into Boolean functions.

The register operation sequence will describe precisely the process of
information transfer within the registers of the computer. Each line of the
sequence will consist of a control function, followed by a colon, followed
by one or more elementary operations in symbolic notation. The control
function is always a Boolean function whose variables are the timing signals
fo-t3, the decoded operation qo-q;, and various outputs of flip-flops. The
elementary operations are specified in accordance with the symbolic nota-
tion defined in Table 8-1. «

Once a “start” switch is activated, the computer sequence follows a basic
pattern. An instruction whose address is in the C register is read from
memory. Its operation part transferred to the I register, and the C register

is incremented by 1 to prepare it for the address of the next instruction.

When the instruction is a memory-reference type (excluding BUN), the
memory is accessed again to read the operand. Thus, words read from
memory into the B register can be either instructions or data. The F
flip-flop is used to distinguish between the two. When F = 0, the word
read from memory is interpreted by the control logic to be an instruction,
and the computer is said to be in an instruction ferch cycle. When F = 1,
the word read from memory is taken as an operand, the computer is said
to be in a data execute cycle.

An instruction is read from memory during the fetch cycle. The register-
transfer relations that specify this process are:

Ft: (=D m
Fty: ©O+1=¢C
Ft:  (Bizae) =1

When F = 0, the timing signals 7, ¢,, ¢, initiate a sequence of operations that
transfer the contents of the C register into the D register, initiate a memory
cycle, increment the C register to prepare it for the next instruction, and
transfer the operation part to the I register. All elementary operations are
executed when the control function (as specified on the left of the semi-
colon) becomes logic-1 and when a clock pulse occurs. Thus the elementary
operations in register flip-flops as well as the memory initiate cycle, are
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executed at the trailing edge of a clock pulse which corresponds to the
trailing edge of the timing signals (See Fig. 11-4).

The next step depends on the value of g;, which is decoded from the /
register. If it is a memory-reference instruction, an operand is needed. If
not, the instruction is executed during time ¢5.

We shall find below that the BUN instruction does not need an operand
from memory, although it is listed as a memory-reference instruction. When
the operation code 0, 1, 2, 3, or 4 is encountered, the computer has to go
to an execute cycle and read the operand. This condition is detected from
the decoder associated with the [ register and causes a transfer to the
execute cycle by setting flip-flop F, thus:

F'(@o +q1 %492 +qs +qa)ts: 1=>F
The register operations common to all instructions during the fetch cycle
are listed in Table 11-5.

When the computer is in an execute cycle, i.e., when F = 1, the basic
cycle is as follows: read the operand from memory, execute the instruction,
and return to the fetch cycle to read the next instruction. The operand is
read during time ¢; + ¢, and is available in the B register at least 0.2 usec
prior to the termination of f,. While the operand (or another word) is
stored in memory during time #3 + 7o, the instruction can be executed.
The elementary operations needed to execute the instruction depend on
the ¢q; signal received from the control logic. However, during the execute
cycle, there are common operations independent of the value of q;. These
are:

Fty: (Bi-12) =D, m

Ft 3 0=F
Table 11-5 Instruction Fetch Cycle

Control Elementary

function operations Comments
F'ty: O =D m Read instruction
F't,: O +1=>C Increment C-register
Ft,: Bis—e) =1 Transfer operation
F'ig, +q, +q, +q, +q,) t5: 1=F Go to execute cycle
(q; tq, +q,) 1, (see Tables 11-7, 11-8 Execute appropriate

and 11-9) instruction

A memory cycle is initiated at 7, to read the operand. The address of the
operand is in bits 1-12 of the instruction, which is in the B register.
Therefore, a transfer is needed from B,.;, to the D register. At the
completion of the execute cycle, the computer always returns to the fetch
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Table 116 Common Operations for Execute Cycle

Control Elementary

function operations Comments

Ft,: B,—,)=D ' m Transfer address part of
instruction and read
operand from memory.

F(t, +1t,) (see Table 11-7) Execute memory-reference
instruction

Ft,: 0=F Return to fetch cycle

Table 11-7 Execution of Memory-Reference Instructions

Control Elementary
Instruction  functions operations Comments
AND Fq,t,: “AWAB=4 Logical AND
ADD Fq,t,: A)+B)=>A,carty=E Arithmetic addition
ISZ Fq,t,: B)+1=B Increment B-register
Fq,zpt,: O+1=C Skip next instruction if
B)=0
STO Fq,t,: ) =8 Transfer (4) to B-register
BSB Fq,t,: O=B,_,,,0101=8,,_,,, Store (C) in memory
D)=C together with BUN
Fq,t,: O+1=C operation. Next instruc-
tion taken from M + 1
BUN qsty: B,—,)=C Next instruction taken
from M

cycle with the r; signal. The common operations performed during the
execute cycle are listed in Table 11-6.

There remains now to specify the execution of instructions. The
memory-reference instructions (excluding BUN) are executed when F = 1
and with timing signals ¢, and/or #3. All other instructions are executed
with timing signal #3 without changing the value of F. Table 11-7 sum-
marizes the operations required to execute each memory-reference instruc-
tion. The decoded operation g; determines which operation is executed.

The AND instruction is executed with timing signal ¢ although it could
be executed with £, as well. The ADD instruction is executed with timing
signal 73, which leaves 1 usec for the carry to propagate in the adder
circuits. The ISZ instruction is executed with the following two elementary
operations:

Fq,t,: (B)+1 =B
Fgyzgty: (C)+1=>C (25=1if B)=0)
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The instruction requires the incrementing of the word read from location M
prior to its restoration during the memory write period. Since the word is
available in the B register 0.2 usec prior to the termination of timing signal
t,, there is available 0.2 psec for the carry to propagate in the combina-
tional gates that perform the counting. The B register is then incremented
with timing signal ¢, and the new value is stored in location M. While the
incremented number is being stored in memory its value, which is still
available in the B register, is checked; if it is equal to 0, the C register is
incremented by 1, causing a skip of one instruction. The symbol zp is a
signal from the B register. Its value is logic-1 when the contents of the
register are equal to zero.

The store instruction specifies a transfer of contents from the A register
to the memory word at location M. The word in location M is erased (and
transferred to the B register) during the memory read period. By trans-
ferring the contents of 4 into B with timing signal ¢,, the word stored
during the memory write period is a new word equal to the contents of A.

The branch to subroutine (BSB) instruction is the most complicated
instruction available in the computer. One possible way to execute this
instruction is as follows:

Fqat,:  (C) ® Bi—12, 0101 =B,5—3, D)=>C
Fg,t;5: (O+1=C

The address of the next instruction available in the C register is transferred
to the address part (bits 1-12) of the B register and the code 0101 (BUN)
is transferred to the operation part (bits 13-16). This is done with timing
signal 7, so that this value is stored in memory at location M. Remember
that the address register D contains the address part M (see Table 11-6 at
time Fty) of the original BSB instruction, so that a transfer of contents
from the D register to the C register results in transferring M into C.
Register C is incremented with timing signal 73 so that the next instruction
will be read from memory at location. M + 1.

The branch unconditional (BUN) instruction does not need an operand.
It merely specifies that the next instruction be taken from location M.
Therefore, with signal 73, the address part of the instruction in Bj_j, is
transferred to register C to become the address of the next instruction to
be executed. This can be done during the fetch cycle without having to set
flip-flop F.

The execution of all register-reference instructions is listed in Table 11-8.
These instructions are executed with timing signal ¢; during the termination
of the fetch cycle. This is possible because the instructions need only one
elementary operation for their execution, which can be performed while the
instruction is stored back into memory. The control function is partly
determined by one of the 12 least significant bits of the B register, where
the instruction is available during time ¢;. For example, the instruction
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Table 11-8 Execution of Register-Reference Instructions

Hexa-
decimal Control

Instruction Code Functions Elementary Operations

NoOP 6000 q,: Nothing

CLA 6800 q¢B,,t5: 0=4

CLE 6400 q¢B,,1t,: 0=E

CMA 6200 qeB,ots: A=A

CME 6100 qsB,t,: E)=E

SHR 6080 qsBgts: AD)=E, (E)=A4,,,A; , )=4;
i=1,2,...,15

SHL 6040 qeBqts: (A“s):’E,(E'):’Al’(Ai.l):’Ai
i=2,3,...,16

ICA 6020 qeBgt;: A)+1=4

SPA 6010 qsB At O+1=C

SNA 6008 qeB,A ¢ty O+1=C

SZA 6004 qeB,zyt5: O+1=C

SZE 6002 q¢BLE't,: O+1=C

HLT 6001 q¢B,t,: 0=S

CLA has the hexadecimal code 6800, which gives a binary equivalent 0110
1000 0000 0000. The operation code is decoded from the I register and is
equal to q¢. Bit 12 in the B register is a 1 so that the control function
that executes this instruction is q¢B;2?3.

The first seven register-reference instructions perform a clear, comple-
ment, shift, and increment operation on the A register or E flip-flop. The
next four instructions are skip instructions executed only if the stated
condition is satisfied. The skipping of the instruction is achieved by incre-
menting register C once again (in addition to the incrementing during F't,,
See Table 11-5). The required condition for skipping becomes part of the
control function. Thus, the accumulator is positive if A, = 0 and negative
if Ay¢ = 1. The symbol z, designates an output from the A register which
is logic-l when its contents equal zero. The halt instruction clears the
start-stop flip-flop S and stops the timing sequence.

The input-output instructions are executed with timing signal r; during
the fetch cycle. The control functions for these instructions contain the
operation g5 and the corresponding bit of the B register. The I/O instruc-
tions consist of two transfer instructions and two skip instructions, which
depend on the status of control flip-flop 9 in the input or output register.

11-6 REGISTER OPERATIONS

The sequence of register operations for the entire computer is listed in
Tables 11-5 to 119. The difference between these tables and Tables 11-2
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Table 11-9 Execution of Input-Output Instructions

Hexa-
decimal Control
Instruction Code Functions Elementary Operations
SIN 7800 q,B,,N,t,: +1=C
INP 7400 q.B, t,: N, g) =4, 4, 0=N,
SOT 7200 q,B,,Uyt,: O+1=C
ouT 7100 q.B,t,: A, )= U4, 1=U,

to 114 is that the latter constitute a set of specifications for the computer,
while the former specify in detail how the instructions are to be executed
internally.

A digital system is completely specified by its sequence of elementary
operations and control functions. The procedure for designing any syn-
chronous digital system is the same; that is, from knowledge of the system
requirements one formulates a control network and obtains the sequence of
elementary operations for the system. Once this sequence is available, the
rest of the design is straightforward. In many installations it is completed
by design automation techniques.

To obtain the flipflop functions to each register of the computer, we
must obtain the list of elementary operations for each register separately.
The elementary operations for each register can be retrieved from
Tables 11-5 to 119 and arranged in a convenient order to facilitate the
next step of the design. This is done in Table 11-10, where each register is
listed together with its own required elementary operations and control
functions. The information contained in Table 11-10 is identical to that
available in the previous tables. The only difference is in the order in which
it is arranged.

The control functions listed in Table 11-10 are assigned a Boolean
variable name. This will help shorten the algebraic representation of input
functions for the registers. The control function variables are assigned a
lower-case letter identical to the capital letter reserved to symbolize the
corresponding register. The control functions within a register are dis-
tinguished by a numerical subscript.

Table 11-10 is easily derived from Tables 11-5 to 11-9. The register to
which an elementary operation belongs is recognized from the letter symbol
found on the right of the double-line arrow. For example, to recognize the
elementary operations belonging to register 4 we scan the operations listed
in Tables 11-5 to 11-9 and retrieve all those that have an 4 to the right of
the double-line arrow. The elementary operations for the other registers are
obtained in a similar manner.

The G register was mentioned in Sec. 11-4 and shown in Fig. 11-5 as a
two-bit counter that, together with a decoder, supplies the four basic timing
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Table 11-10 Elementary Operations for Registers

Memory-Control
4 [
A-Register

a, = Fq,t,:
a, = Fg,t,:
a; = q¢B,,t;:
a, =4q4B,,t;:
a; = qeBgt,:

a5 = qeB,t;:

a; = qsBgt,:
@y = qq,B,,15:
B-Register

b, = Fg,t,:
b, = Fq,t,:
b, = Fq,t,:
C-Register

¢, =F't, +

(quB + q.a_)Fta +
BsAjs tB A, +
B,zg +B,E')qt;, +

BNy, +B,,U))q,1,:

c, = Fq,t,:
Cy = qgts:

D-Register

d, = Ft,:

d, = Ft,:
I-Register

i, =F'ty:
E-Flip-flop

€, = q¢B,,1;5:
e, = q¢B,yt;:
a, = Fq,t,:
a5 =q¢Byt;:

45 = q48,1,:

M)A @B =4
A+ @B =4

0=A

A=A

(E) = A, A, , ) = A4
i=1,2,...,15

(EV)QAU(A,"_ 1)=’Ai
1=2,3,...,16
A)+1=4A4

(Nl -5)=A1 -8
zg = 1if (4) = 0

B)+1=28

A =B

©) = B, -3, 010t =B, _,,
zp=1if(B)=0

O+1=C
D) =c
By .1)=C

© =D
B, -)=D

Bys - ¢) =T

0=F
(E)=E
carry = F
A,)=F
A,)=F

Memory Cycle Control

AND
add
clear

complement
shift-right

shift-left

increment
transfer
check (4) if 0

increment
transfer
transfer
check (B) if O

increment
transfer
transfer

transfer
transfer

transfer

clear
complement
transfer carry
shift-right
shift-left
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Table 11-10 Elementary Operations for Registers (Continued)

F-Flip-flop
fl = F’(qo + q, + q,

+q, +Q4)t3: 1=F set
fr =Fty: 0=F clear
S-Flip-flop
§, =q¢B ity 0=5 clear
G-Register
S: G)+1=1 count
U-Register
U, =qq,B,15: A, )=U, 4, 1=U, transfer and set flag
N-Register
ny = qq.B,,t,: 0=N, clear flag

signals. This register is not listed in Tables 11-5 to 11-9 but must be
included in Table 11-10. The G register counts clock pulses as long as the
start-stop flip-flop S is equal to 1. All operations are conditional on the
timing signals, and the timing signals are generated only when flip-flop
S = 1. When S = 0, the control sequence stops and the computer halts.

11-7 DERIVATION OF BOOLEAN FUNCTIONS

Table 11-10 has all the necessary information needed to derive the Boolean
functions for the control network and for the inputs to all registers. In
addition, we need the Boolean functions for the two decoders shown in the
block diagram of the control unit in Fig. 11-5. Signals qo-q; are generated
by the operation decoder and fo-f3 by the timing decoder. The Boolean
functions for the two decoders are listed in Table 11-11. Note that the
timing signals are generated only when the start-stop flip-flop § = 1.

The control logic network shown in the block diagram of Fig. 11-5 can
be implemented with combinational gates. The Boolean functions for these
gates are specified by the control functions listed in Table 11-10.
Table 11-11 lists all the Boolean functions needed to implement the control
unit of the computer.




Sec. 11-7 DERIVATION OF BOOLEAN FUNCTIONS 379

The input Boolean functions for each register are derived from the
elementary operations listed in Table 11-10. These functions together with
other combinational circuits for each register are listed in Table 11-12. The
input Boolean functions for the accumulator and all other registers are
derived by the procedure outlined in Sec. 9-7. In fact, all the operations
listed for the accumulator in Table 11-10 (except the transfer from the
input register) are listed in Table 9-1. The accumulator designed in Ch. 9 is
almost identical to the one employed by the computer. Note that the carry
of the accumulator-adder has been designated by the letter K. This is
because the letter C (used in Sec. 9-7 for the carry) is reserved here for the
C register. Also note that the end-carry K;; (out of the last stage) is
transferred to the E flip-flop.

The procedure for deriving the input Boolean functions for the registers
from the list of elementary operations will not be carried out in detail here.
The reader is referred to Sec. 9-7 for a thorough coverage of this proce-
dure. The capital letters in the input functions of Table 11-12 represent
registers; the subscripts denote individual flip-flops. Lower case letters
represent control signals; their numerical subscripts have no specific meaning
other than the definition given in Table 11-10.

It is necessary to check the propagation delay of critical operations to
insure proper timing. The registers use JK flip-flops with trailing-edge
triggering and a propagation delay of 100 nsec. All combinational gates are
assumed to have a maximum propagation delay of 30 nsec. Some of the
control unit circuits may require up to four levels of gates, but no
propagation delay problems are to be anticipated since the elapsed time
between two elementary operations is 1 psec. The maximum carry propaga-
tion delay in the accumulator-addition circuits is 2 X 30 X 16 = 960 nsec,
but the word in the B register settles to its final value 200 nsec before the
termination of ¢, (see Fig. 11-4). The add control signal propagates during
time #3. So the total time available for signal propagation is 1000 nsec. The
maximum propagation delay for the increment operation in the accumulator

Table 11-11 Boolean Functions for Control Logic

Control Logic Network

Operation Timing (consists of the following control func-
Decoder Decoder tions which are specified in Table 11-10)

q, = LLT, ty = G,G;S a, b, iy

q, = LILLI, t, = G,G,S a, b, e,

q, = LLLL 5, = G,G\S a3 by €,

q; = LLLI, t; = G,G,S a4 € 5

g, = LLLIL as €2 Iz

qs = LL LI, 2 C3 51

qs = I,LLI, a, d, u,

q, = LI, LI, ag d, n,
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Table 11-12 Boolean Input Functions to Registers

Accumulator Register

Input Functions:

JA; = BiKja, +BiKla, va, + Ay a5+ A;_ja, + Vi+Na,
i=2,3,...,15

j=i=2,3,...,8

KA; = Bja, +BiK;a, +B;Kja, +a, +a,

+A;~+1115 +A;-_1a6 + Vi+N}aB

JA, = Bjya,+ta, +A,a;+Eas+a,+N,a,

KA, = Bia, +B,a, +a, +a,+A,a; +E'a; +a, +Nja,

JA,s = B\4K,50, +B, (K, 40, *a, +Ea; + A, a, +V,

KAy s = Bioa, +B, 4K, 0, +B, K} a, +a, +a,

’ )
+tEastA 5a,+V,

Combinational circuits needed for input functions:

Kipy = AB;+A;K;+BK; i=1,2,... 16 (carry)
K, =0
Viel = ViAi i=1,2,... 15 (increment)
v, = a4,
also needed for detecting (4) = 0
Zip1 ziAlf i=1,2,...,16
z, =1

Zy Zyq (zero content)

Memory Buffer Register

Input Functions:

JB; = Y;+A;b, +2Z;b, i
KB; = Y;+A;b, +Z;b,

i

1,2,...,16

Combinational circuits needed for input functions:

Yiir = YiB; i=1,2,3,4,5,7,8,9,
10, 12, 13, 14, 15

Y, b,

Y, = B,B,B;B,B;B/b, (increment)

Y,, = B,B,B,B,B,B,B,B;B,B,,B,,b,

VA = i=1,2,... 12 (transfer

-~

1
from C register)

= 13, 15 (wransfer BUN
14, 16 operation)

~
I

1
=0 i

NN
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Table 11-12 Boolean Input Functions to Registers (Continued)

also need for detecting (B) = 0

Yis1 = YiB; i=1,2, ..., 16
»y =1
zp = Yiq (zero content)

Program Control Register

JCi = Xi +Dic‘2 +BiC3 i= 1’ 2’ o .oy 12
KC; = X;+ Djc, *+ Bjc,
with: ]
X = X G i=1,2,..., 11 (increment)
X, = ¢
Memory Address Register
JD; = Cd, +Bid, i=1,2...,12
KD; = Cid, +Bjd,
Instruction Register
JIi = Bi+121:l 1= la 2’ 39 4
KI; = B,
Sequence Register
JG, = § JG, = G, S
KG, = § KG,=6,S
Output and Input Registers
JU; = A, i=1,2,...,8 JU, = u,
KU; = A, KN, =n,
Single flip-flops
JE = e, +K,,a,*A a5+ 4,4,
KE = e, te, +K)qa, +A\a; +A' a,
JF = h
KF = f,
KS = s,

must be less than 1000 nsec. But the same operation in the B register must
be completed in 200 nsec or less (during the ISZ instruction). The incre-
ment operation implemented in the accumulator has a maximum propaga-
tion delay of 450 nsec, but the same operation for the B register is
implemented with carry look-ahead to the 12th position and is therefore
reduced to a maximum delay of 180 nsec. (See Prob. 11-6.)

The set of Boolean functions for the digital computer given by
Table 11-12 culminates the logic design phase of the system. The implemen-
tation of the Boolean functions requires some knowledge of the type of
combinational gates used, their fan-in, fan-out, and any other restrictions.
To complete the design of the computer, a wiring diagram is needed and a
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prototype should be built to check any wiring and logical errors. The final
evaluation of the machine rests with the users whose opinion must be
solicited after the computer is in operation.

11-8 COMPUTER CONSOLE

Any computer has a control panel or console with switches and lamps to
allow manual and visual communication between an operator and the
computer. This communication is needed for starting the operation of the
computer (bootstrapping) and for maintenance purposes. For the sake of
completeness we shall enumerate a set of useful console functions for the
computer, although the circuits required to implement these functions will
not be shown.

Lamps indicate to the operator the status of registers in the computer.
The normal output of a flipflop when connected to an indicator lamp will
cause it to light when the flip-flop is set and to turn off when the flip-flop
is cleared. The registers whose outputs are to be observed in the computer
console are: A, B, C, D, I, E, F, and S. When a count is made of the total
number of flip-flops involved, we find that 63 indicator lamps are needed.

A set of switches and their functions for the console may include the
following:

1. Sixteen “word” switches to set manually the bits of one word.

2. A “start” switch to set the S flip-flop. The signal from this switch
also clears flip-flop F, Ny, and U, and register G.

3. A “stop” switch to clear the S flip-flop. To insure the completion of
the current instruction, the signal from the switch is ANDed with the
Boolean function (¥ + qs + q¢ + q7)t3 before it is applied to
clear S.

4. A “load address” switch to transfer an address to the C register.
When this switch is activated, the contents of 12 “word” switches are
transferred to register C.

5. A “deposit” switch to manually store words into memory. When this
switch is activated, the contents of register C are transferred to
register D and a memory cycle is initiated. After 2 usec, the contents
of the 16 “word” switches are transferred into the B register and
register C is incremented by 1.

6. A “display” switch to examine the contents of a word in memory.
When this switch is activated, the contents of register C' are trans-
ferred to register D, a memory cycle is initiated, and register C is
incremented by 1. The contents of the memory word specified by the
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address in register C is in register B and can be seen in the corres-
ponding indicator lamps.

To insure that the computer is not running when the power is turned
on, the S flip-flop must have a special circuit that forces it to turn always
to the clear position right after the application of power to the machine.

11-9 CONCLUDING REMARKS

The register configuration established in Fig. 11-1 is almost an absolute
minimum for even the smallest computer. Registers 4 and B are used for
arithmetic processing and only one arithmetic instruction (ADD) is included.
Most other computers use more and possibly longer registers for arithmetic
operation. With two registers in the “arithmetic” unit; only addition and/or
subtraction can be implemented directly. However, other operations such as
multiplication and division can be programmed by a sequence of instruc-
tions that forms a subroutine. Accuracy greater than 16 bits is also possible
by using subroutines that perform double precision arithmetic.

In designing the computer, we have provided transfer paths directly from
each source register to each destination register. This form of information
transfer is efficient only if the number of registers available is small. When
a large number of registers is involved, direct transfer paths are not
economical because they require an excessive number of interconnections.
The most common technique employed for inter-register transfer in
computers is a bus system, as discussed in Sec. 8-1.

Many commercial computers provide more than one accumulator register
in the processor unit. For example, a computer may have 16 accumulator
and index registers and the particular register(s) used may be specified by
the instruction. This implies that the augend and addend values for the
arithmetic addition circuits may come from many sources and that the sum
may go to any one of many possible destinations. Again, the best way to
provide all possible data paths is through a bus system. In fact, many
digital computers are built with an independent arithmetic adder circuit
whose inputs and outputs are connected to a bus system. Control signals
are used to specify the registers to be connected to the adder bus during a
particular ADD elementary operation.

A peripheral processor is not included in the over-all system configura-
tion since only one I/O device is used. Peripheral processors are an integral
part of modern digital data processing systems. Their function is to super-
vise the communication from and to many input and output peripheral
units and the central processor. The logic design of a peripheral processor
can be carried out by the procedure outlined in this chapter once the
specific functional characteristics of the unit are formulated.
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Two features not included with the computer but found in almost any
commercial machine are: indirect addressing in the instruction format and
index registers with an appropriate set of instructions. These two features
were not included here because they would have complicated the design
process. Indirect addressing would require another memory cycle in addition
to the fetch and execute cycles. The inclusion of index registers would
increase the number of registers, as well as the number of instructions for
the computer, without adding any new significant design features. It is
worth mentioning that index-register capabilities can be simulated for this
computer by means of the ISZ instruction.

The basic timing cycle shown in Fig. 11-4 consists of four timing signals
during one memory cycle. By increasing the frequency of the clock-
generator, more timing signals could be generated to increase the number of
operations performed on registers during a memory cycle. The four timing
signals employed for this computer were sufficient for the execution of any
instruction during one or two memory cycles. Certain instructions such as
multiplication and division require a longer sequence of elementary opera-
tions and a computer having such instructions would be operating efficiently
if more timing signals occur during one memory cycle. The execution of
long arithmetic instructions usually take computer time equivalent to several
memory cycles.

The control portion of the computer as shown in Fig. 11-5 demonstrates
a simple approach to control logic design. Another method that may be
used to generate control sequences is by means of asynchronous delay
elements and time-sequencing circuits. The asynchronous time-sequencing
signals detect the completion of one operation and initiate the next.
Another configuration for generating control signals is by means of a
sequential circuit. The state of the memory elements in the sequential
circuit specifies the present operation. The present state, with possible other
conditions, Getermines the next state and the next operation. Another way
to organize the control unit of a digital computer is with a read-only
memory (ROM) and a microprogrammed control unit as discussed in
Sec. 10-3. ‘

The symbolic relations used throughout this design are sometimes called
a ‘“register-transfer language.” The word “register-transfer” implies the
possibility of performing an operation and transferring the result to the
same or another register. The word language is borrowed from computer
users who employ this term to programming systems. More details about
this computer design language can be found in references (1-5). Duley and
Dietmeyer (6) extended this language to include in the set of symbols the
register configuration, the memory unit, and timing and control information.
They have called this extended symbology a Digital System Design Language
(DDL). In a second paper (7), they describe a computer program that
accepts as input the complete specifications of the digital computer in DDL
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and translates it to the required set of Boolean functions. G. B. Gerace (8)
gives examples of a transfer language for various arithmetic operations and
describes a procedure for minimizing required Boolean functions. Iverson (9,
10) developed a common symbolic language for hardware and software
systems that is useful for listing the sequence of elementary operations in a
computer. Others (11-15) used an existing programming language called
ALGOL and adapted it for a design language that describes the logic
behavior of digital systems. The purpose of all these languages is to express
a digital system in a precise, concise manner and then automate the design
procedure by using a computer program to translate the specifications of
the system into logic equations and other pertinent design information.

PROBLEMS

11-1. Show that with the three instructions AND M, CMA, and CLA, it is
possible to perform each of the 16 logical operations listed in Table 2-5.
Assume that one logical word (x in Table 2-5) is in memory location M
and the other logical word (¥ in Table 2-5) is in the accumulator. The
result of the operation is to remain in the accumulator. (Note that ADD
M and STO M instructions are sometimes needed for transfer between
memory and accumulator.)

11-2. Write a program to accept characters from the input device, pack two
characters in one 16-bit word, and store the words in memory starting
with location 100. Repeat using the instructions defined in Prob. 11-17.

11-3. The following program is a list of instructions in hexadecimal code.
The computer executes the instructions starting from location 100.
What is the value of the A register and the contents of memory
register number 103 when the computer halts?

Hexadecimal
Location Code
100 4103
101 6020
102 6001
103 0000
104 6800
105 6200
106 5103

11-4. Write a program to add two numbers and check for overflow. The E
flip-flop should be set to 1 if overflow occurs and cleared to O
otherwise. Use the algorithm developed in Prob. 9-19(b) for
detecting an overflow.
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11-7.

11-9.

11-10.

11-11.

11-12.
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What is executed in the computer if an instruction is encountered
and: (a) bit 16 is equal to 1 or (b) a register-reference instruction
has two or more bits of B;_;, set to 1?

Verify that the maximum signal propagation delay for the circuit
that increments the B register is equal to 180 nsec. Assume that the
maximum propagation delay of a single AND gate is 30 nsec.

Design one typical stage of registers 4, B, and C that perform the
following functions. Use JK flip-flops.

Py (A)=B,(B)=C, (0O)=4

Py: AV BYV@C)=4 logical OR
P3: (AY)AB)AC)=B logic AND
Py A BB =>C exclusive-or

Derive the flip-flop input functions to all registers of the computer
and verify the equations listed in Table 11-12. Start from the ele-
mentary operations given in Table 11-10.

Design the computer whose specifications were given in Sec. 10-2.
Use the register configuration from Fig. 10-2 and the machine
instructions listed in Table 10-2. Use a memory unit of 1024 words
with 14 bits per word.

The ADD instruction assumes that negative numbers are in 2’s
complement representation. It is required to change the hardware
execution of this instruction (operation code 1) so it will add
numbers in sign-1’s complement representation.

(a) Define the execution of the instruction with elementary opera-
tions and control functions.

(b) Change the input Boolean functions of the accumulator register
so that the instruction is executed in one memory cycle (after
the fetch cycle).

(¢) Modify the execution of the instruction SZA to take into con-
sideration this new representation of negative numbers.

Let bit 16 of a memory-reference instruction be a mode bit d to

designate an indirect address (see Sec. 10-6).

(a) Modify the operation decoder.

(b) Modify Tables 11-6 and 11-17 to take into consideration the
fact that if d = 1, then M (bits 1-12 of the instruction)
designates an indirect address.

Include with the computer a 12-bit index register designated by X.
Let bit 16 of a memory-reference instruction designate the index
register field (see Sec. 10-6). When bit 16 is 1, the effective address
(the address of the operand) is M + (X).

(a) Modify the operation decoder.
(b) Modify the fetch cycle to obtain the correct effective address.
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11-13.

11-14.

11-15.

11-16.

11-17.

Add the following three instructions to the computer:

Operation
Code Description Function
1000 M 2’s complement subtract AW-KM>=4
1001 M branch on zero if (A) =0 then M = C
1010 M add to memory (KM>) +A4)=><M>

KM>)+(4)=> 4
Show the sequence of elementary operations together with the
control functions for the execution of each of the above instructions
(include the fetch and execute cycle operations). Note: An instruc-
tion may require three or more memory cycles for execution. Add a
flip-flop R to the computer and use it in conjunction with the F
flip-flop to distinguish between four different memory cycles, thus:

RF = 00 for the fetch cycle
RF = 01 for reading an operand
RF =10 or 11 available for other functions

List all changes and additions in the Boolean functions of
Tables 11-10, 11-11, and 11-12 necessary to implement the
computer with the addition of the three instructions of Prob. 11-13.

Show the sequence of elementary operations together with the
control functions for the execution of the following instructions (see
note in Prob. 11-13):

Operation code: 1011 M
Description:  Add to memory, leave accumulator unchanged.
Function: (KM>)+(4)=><M>;(4) remain the same,.

Show the sequence of elementary operations together with the
control functions for the execution of the following instruction.
operation: 1100 M
description: selective clear
function: (<M>) A (4) = A.
Show the sequence of elementary operations together with the control
functions for the execution of the following instructions:

Hexadecimal

Code Description

D800 Swap left and right characters; (4; -g) = 49 - ¢,
(g - 16) = A4, _ 5.

D40x arithmetic shift accumulator eight positions to the
right (15 2 x = 0).

D20x circular shift accumulator x positions to the right
(15 =2 x =2 0).

D10x circular shift accumulator x positions to the left

(15 =2 x = 0).

Arithmetic and circular shifts were defined in Sec. 9-9.
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11-18. Show the sequence of elementary operations, together with the
control functions, for the execution of the following instruction:

operation code: 1110 M
description: load to accumulator immediate
function: M = A4, . ,, sign extended, ie., if My, =0

(positive), then 0 = A3 _14° If My, =1
(negative), then 1 = 4,3 _,¢.
11-19. Show the sequence of elementary operations, together with the
control functions, for the execution of the following instruction:

operation: 1111 M

description: compare (< M >) and (4) and skip 3 ways; leave
(4) unchanged

function: If (KM>)> (4), then (C) + 1 = C (skip next
instruction)

If (K M>)<(4), then (C) + 2 = C (skip next
two instructions)
If (KM >)=(A), then proceed to next instruction.

11-20. Derive the input Boolean functions to registers for the imple-
mentation of the instructions in Prob., 11-15 to 11-19.

11-21. Design a digital computer with 16 operations and 34 instructions
specified by Tables 11-2 to 11-4 and Probs. 11-13 to 11-19.
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LOGIC

1 2 DESIGN

12-1 INTRODUCTION

The over-all objective of logic design is the analysis and synthesis of
interconnected digital circuits that accomplish specific information processing
tasks. Digital systems vary in size and complexity from a simple combina-
tional or sequential circuit to a complex of interconnected and interacting
digital computers and peripheral units. A large system is usually divided into
subsystems, each of which is designed separately. The various subsystems are
then interconnected with common data transfer and control signal paths.

The process of logic design and analysis is a complex undertaking,
especially since the development of IC technology. Many installations
develop special digital computer automated design and analysis techniques to
facilitate the design process. Design-automation programs are extensively
used to perform such tasks as:

(1) logic minimization and simplification of Boolean functions,

(2) simulation of the system prior to construction to check for logical
error,

(3) derivation of Boolean functions from a list of register-transfer
operations,

(4) assignment of logic circuits and their interconnections from the given
Boolean functions,

(5) generation of wiring lists, and

(6) generation of documents for manufacturing and maintenance.

390
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However, the specifications for a system and the development of
algorithmic procedures for achieving the various data processing tasks cannot
be automated and require the mental reasoning of a human designer.

The most challenging and creative part of the design is the establishment
of design objectives and the formulation of algorithms and procedures for
achieving the stated objectives. This task requires a considerable amount of
experience and ingenuity on the part of the designer. The knowledge
acquired in previous chapters coupled with the process of logical reasoning
will be used later to demonstrate the derivation of design algorithms.

Throughout the book, we have adopted various symbolic and tabular
procedures for describing the interrelation between digital circuits and
systems. Combinational circuits are described by Boolean algebra or truth
tables. Clocked sequential circuits are expressed by means of flip-flop input
functions or state tables. Control sequences are specified with timing
diagrams or state diagrams. Register-transfer relations express operations
among registers and modules. During the design process we may use one or
all of these design tools, depending on the system and its complexity.

The binary information found in a digital system is either data or
control. Data are discrete elements of information that are manipulated by
combinational circuits. Control information provides command signals for
specifying the needed manipulation sequences. The logic design of a digital
system is a process for deriving the digital circuits that perform data
processing and the digital circuits that provide control signals. It should be
noted that the control logic network is the most difficult part of the
system to design. We have shown in Ch. 11 the configuration of a simple
timing and control network. Other approaches to control logic design are
introduced later in this chapter.

The design examples in this chapter demonstrate some important features
of logic design. The first example is a combinational circuit with nine input
variables. The second example is a sequential circuit that requires a control
sequence. The next two examples deal with arithmetic operations and
demonstrate a process for deriving design algorithms.

12-2 DECIMAL ADDER

A combinational circuit with a large number of input variables is difficult
to design by paper and pencil techniques. A computer program based on
the tabulation or similar method of Boolean function simplification would
be helpful in such a case. However, it is sometimes possible to divide a
large combinational circuit into smaller portions that are easier to manage
and then, by interconnecting the pieces together, form the required circuit.
This technique is demonstrated in the design of the decimal adder under-
taken in this section.
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Computers that perform arithmetic operations with the decimal system
represent decimal numbers by decimal codes.* An adder for such a
computer must employ arithmetic circuits that accept coded decimal
numbers and present results in the accepted code. For binary addition, it
was sufficient to consider a pair of significant bits at a time, together with
a previous carry. A decimal adder requires a minimum of nine input lines
and five output lines, since a minimum of four bits are required to
represent each decimal digit in a binary code. Of course, there is a wide
variety of possible adder circuits dependent upon the code used to represent
decimal digits.

Consider the addition of two decimal digits in BCD, together with a
possible carry from a previous stage. Each decimal digit is applied through
four separate lines to be designated by As, A4, Az, A, and Bs, By, B,
B, where the subscript number denotes the weight of the bit in the code.
A ninth input line must be included for the carry from the lower signi-
ficant stage. Note that the carry is never greater than 1, regardless of the
base being used, and therefore a single line is sufficient for its transmission.
The sum digit contains four output lines designated Sg, S4, S,, S;, and an
output carry on a single line is needed for the next higher stage. If the
code used for the decimal digits contains more than four bits, the number
of input and output lines of the adder must be increased accordingly.

The design of a nine-input, five-output combinational circuit requires a
truth table with 2° = 512 entries. Many of the input combinations are
don’t-care conditions, since each digit has six combinations that never occur.
The simplified Boolean functions for the circuit may be obtained by the
tabulation method. However, doing it with paper and pencil requires a
considerable amount of time. A computer program would do the job easier
and with greater accuracy.

Another way of solving this problem is to use full-adder circuits together
with some modification that will compensate for the fact that six combina-
tions are not used. Consider for example a four-bit adder; i.e., four full-
adders in cascade that add any two four-bit binary numbers. When the
inputs to these adders are decimal digits represented in BCD, the inputs
may be considered binary numbers restricted to a range from 0000 to
1001. This is shown schematically in the upper portion of Fig. 12-1. The
uncorrected digit output lines in the diagram range in value from binary O
to binary 19 (10011), since the numbers added form the maximum sum
9+ 9+ 1 =19; the 1 in the sum being an input carry. Table 12-1 lists
the possible outputs of the uncorrected digit. However, the output sum of
the decimal adder must be represented in BCD and appear in the form
listed in the second column of the table. Since the corresponding numbers
in each row of the table should be the same, the problem is to find a
simple set of rules by which the uncorrected digit sum can be corrected.

*See Sec. 8-5 for the representation of decimal numbers in registers,
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Bg Ag B,A, B, 4, B 4 Input
l . j l L l ‘ l v
FA FA FA FA
cC__ S c__ S C C S
Kg K, K, K,
Uncorrected
23 Z4 Z 21— digit sum
Output
carry
0 1 1 0 | =—— add 0110
HA FA HA
C S cC S C S
Output
carry )
Correct
Sg S ) 5y digit sum

Figure 12-1 Decimal BCD adder

In examining the contents of the table, it is apparent that when the
uncorrected digit is equal to or less than 01001, the correct digit sum is
the same and therefore, no correction is needed. When the uncorrected digit
is greater than 1001, the addition of binary 6 (0110) to the uncorrected
digit makes the digit sum correct and the output carry appears.

The logic circuit that detects the necessary correction can be obtained
from the table entries. It is obvious that a correction is necessary when
Ks =1 or when ZgZ, =1 or when ZgZ, = 1. Moreover, a necessary
correction also implies that an output carry equal to 1 must be generated.
The output carry is generated by the Boolean function

C=Ks + 2374 + 232,

This output is used to form the needed correction.
To add binary 6 (0110) to the uncorrected digit, we use one full-adder
and two half-adders (HA), as shown in the lower portion of Fig. 12-1.
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Table 12-1 Derivation of BDC Adder

Possible outputs of the uncor- Corresponding

rected digit sum correct digit sum Decimal

Ky, 2, z, %2, 2Z, C S, S, S, S,

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 o 0 18
1 0 0 1 1 1 1 0 0 1 19

When the output carry is equal to O, nothing is added to the uncorrected
digit. When it is equal to 1, binary 0110 is added to the uncorrected digit.
The output carry generated from the second sum may be ignored, since it
supplies information already available in another line.

The fact that a four-bit adder circuit is available commercially in IC
form in one MSI package gives the circuit of Fig. 12-1 a practical advantage
over other forms of BCD adder implementations. The carry propagation
delay in such a circuit is quite long since the carry must propagate through
four FA circuits. To achieve a shorter delay, it is necessary to either use
MSI packages that include some form of carry speed-up technique (see
Sec. 9-3) or design the circuit with a different configuration.

12-3 CONTROL LOGIC DESIGN

A digital system may be specified by a list of register-transfer relations. The
list consists of all elementary operations for the registers together with the
control functions that specify the conditions for their execution. Control
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functions are Boolean functions whose variables are the system variables
ANDed with a variable generated by a timing sequence. In a simple control,
the timing sequence may follow a binary count, which can be implemented
with a binary counter and a decoder. In a more complicated control, the
timing sequence follows a different count for different values of system
variables. A circuit that generates an arbitrary timing sequence is called a
control register. A control network would normally consist of a control
register that generates the timing sequence and combinational circuits that
implement the various control functions for the other registers in the
system.

A control register is a sequential circuit and may be described by a state
diagram or by register-transfer relations. An example of a state diagram for
a control register is shown in Fig. 12-2. The state of the register at any
clock-pulse period is either pgy, p;, p,, or ps, These states are used as

Py PPy P

11

Decoder

Control
Register

(G)

Clock
pulses

]

x y z
(a) Block diagram

(b) Control state diagram

Figure 12-2 An example of a control register
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timing variables in control functions. (They correspond to variables ¢, - #3 in
the control functions of Table 11-10.) Let us assume that p, is an initial
state, x and y are input variables, and z is an internal variable. We further
assume that inputs x and y are mutually exclusive and that both cannot be
equal to 1 simultaneously, otherwise the state diagram is ambiguous. The
sequence of states that the register undergoes depends on the values of
the variables. When variables x and z are both 1, the control register goes
from the initial state p, to state p; and back to the initial state. On the
other hand, when x =1 and z = 0, the control register follows the
sequence of states p,, ps;, and back to py. When y = 1 and z = 1, the
sequence is py, P2, ps3, and back to py. There are four different state sequences
for this control register; the one generated depends on the variables x, y,
and z. The four sequences of the control register represent the timing
signals of a particular control network. For any clock-pulse period, one and
only one p; is logic-1 and, when p; is included in a control function, it
determines the elementary operations to be executed during that clock
pulse.

Since a control register is a sequential circuit, it can be designed by the
method outlined in Ch. 7. However, the design of a control register can be
simplified when one realizes that a decoder must be provided and, since the
outputs of the decoder are available anyway, it is convenient to use them
as present state variables instead of flip-flop outputs. The recommended
procedure is to derive the Boolean functions for the decoder and then
obtain the flip-flop input functions in terms of decoder outputs and system
inputs.

The formal design procedure with excitation tables and maps may not be
effective when a control register has a large number of states and input
variables. Also, a state diagram for such a sequential circuit may be too
complicated and involved. The design of a control register can be simplified
if register-transfer relations are used instead of a state diagram. For
example, the control state diagram of Fig. 12-2 may be represented with
symbolic relations. Denote the control register by G and assign binary states
po = 00, p; =01, p, = 10, and p; = 11. The transition between states is
specified with control functions and elementary operations as follows:

Jpo: G+1=¢G
x2'po: 10=>G
XZpo: 11=G
Z'py: G@+1=¢6
Zp,y: 11 =G
P2 G)+1=>G

2% 00 = G (or (G) + 1 = G when two flip-flops are used)
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We can collect control functions that specify identical elementary operations
to obtain:

YPo +Zpy +pp tpy: (G)+1=G
xz'py: 10=>G
xzpo + zpy: 11=>G

From this list of register-transfer relations, we see that the design of a
control register involves an increment elementary operation, transfer of
constants, and the generation of control functions in terms of system
variables and decoder outputs.

Note that the straight binary assignment may not be the one that leads
to the simpler combinational circuit for the register. However, the binary
assignment facilitates the description with register-transfer relations. Also
because this is the most natural assignment, it would probably simplify the
check-out and maintenance of the circuit. In practice,” the design and
maintenance costs of using a natural binary assignment are less when
compared to the savings in hardware that could be achieved from some
other state assignment.

An alternative approach to control register implementation is to remove
the decoder altogether and use a number of flip-flops for the register equal
to the number of states with each flip-flop representing a state. Only one
. flipflop is set at any particular time; all others are cleared. A single bit is
made to propagate from one flip-flop to the other under control of decision
logic. Each flip-flop in such an array represents a state and is activated only
when the control bit is transferred to it. For example, the four states in
Fig. 12-2 can be represented by four flip-flops Fo, F,, F,, F; with the
following state assignment:

state | Fy F, F, F,
D1 0 1 0 0

This type of assignment leads to control register configurations that are
easier to standardize, a very important factor when digital systems are
constructed with ICs.

When the above state assignment is used, a control register can be simply
specified by means of register-transfer relations. In fact, the conditions for
setting and clearing of control flip-flops are the same as the functions
marked along the directed lines in the state diagram and the state from
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which they originate. Thus for the example of Fig. 12-2 we have:
x’y’F0: 1= Fo

yFy: 1=F, , 0=F,
xz'Fy: 1=F, , 0=F,
Z'Fy: 1=F, , 0=F,
xzFy: 1=F; , 0=F,
ZF,: 1=>F, , 0=F,
Fy: 1=F, , 0=F,
F3: I:Fo . 0:F3

The control register can be implemented with D flip-flops in a simple
manner. Each of the above control functions sets one and only one
flip-flop. Since the control function is not applied to any other flip-flop,
the D inputs of all other flip-flops will be O and they will be cleared.
Collecting control functions that set the same flip-flop, we obtain the
following D flip-flop input functions:

DF, = x'y'Fy, + F,4

DF, = yF,

DF, = xz'F, + Z'F,
DF3 = xzFy + zF, + F,

We must make sure that initially F is set and all other flip-flops are
cleared. If we start with all flip-flops cleared, there is no way to return to
one of the defined states.

The design of a digital system that requires a control sequence starts by
assuming the availability of a timing sequence. We designate each sequence
by a state, say p; for i = 0, 1, 2..., and proceed to form a state diagram
for the state transitions between sequences. If the system is too complicated
for a state diagram, we list the control register transfer relations by means
of control functions and elementary operations as explained above.

Concurrent with the development of control sequences, we develop a list
of control functions and elementary operations for the other registers in the
system. These register-transfer relations can be derived directly from the
word specification of the problem. However, it is sometimes convenient to
use an intermediate representation to describe the needed sequence of
operations for the system. Two other representations are helpful for the
design of systems that need a control circuit. One is a timing diagram; the
other is a flow chart.

A timing diagram clarifies the timing sequences and relations among the
various signals in the system. In a clocked sequential circuit, the clock
pulses synchronize the operations and cause signal transitions. In an
asynchronous system, a given signal transition causes a change in value of
another signal. A timing diagram is a pictorial representation of required
changes and transitions of all system variables.
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Flow charts are extensively used by programmers to specify the sequence
of computer operations and decision paths needed to solve a particular
problem. A flow chart is a diagram that shows the procedure for finding a
solution to a problem with a given piece of equipment. For programmers,
the equipment is a computer and its instructions. To the logic designer, the
equipment consists of registers, flip-flops, and input-output variables. Flow
charts are a convenient representation of algorithms and procedures and
facilitate the design of digital systems.

A flow chart is a block diagram, where each block specifies a step in the
process as the information flows from one part of the system to another.
The directed lines between blocks designate the path to be taken from one
step to the other. The two major types of blocks are (a) function blocks
that show the operations to be performed and (b) decision blocks that have
two or more alternate paths dependent on certain conditions.

The usefulness of timing diagrams and flow charts in the design of digital
systems is demonstrated in the examples of the next three sections. These
examples also illustrate the procedure for obtaining state diagrams for
control registers.

1244 ASYNCHRONOUS TRANSFER

Although most digital computers and systems operate synchronously, the
transfer of information between two units, each having its own independent
clock-pulse source, must be done asynchronously. An asychronous signal
arriving from an external unit may be in a transition state during a clock
pulse; therefore, special precautions must be taken for its correct detection.
The design example introduced in this section demonstrates a method of
asynchronous data transfer between units. It also illustrates the derivation of
a control logic network.

The system to be designed is a code converter that performs the
following three functions:

1. Accepts decimal data in BCD from an input device.
2. Converts the decimal data to the 2, 4, 2, 1 code (Table 1-2).
3. Transfers the converted data to an output device.

The three operations are repeated as long as the input device has data
available.

A block diagram of the system is shown in Fig. 12-3. Data words are
transferred from the input device to a register, where they are converted
and then transferred to the output device. The control network specifies the
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Figure 12-3 Block diagram of code converter

required sequence of operations and synchronizes the input signals with
flip-flops F; and F, as explained below.

When designing a system that communicates with other devices, it is
necessary that exact specifications be formulated for the interface between
the system and the external devices. Since the code converter circuit does
not know when the input device has data available for transfer, it is
necessary that a control signal furnish this information. Moreover, since the
input device would probably want to be informed when data has been
accepted by the system, we must provide a control signal to inform the
input device that data has been accepted. The same pair of control signals
are also needed for the communication between the code converter and the
output device. The four control signals shown in Fig. 12-3 provide this
information in the following manner:

when w = 1 the system is informed that a word is available in the
input device,

when x = 1 the system informs the input device that a word has been
accepted,

when y = 1 the system informs the output device that a word is
available for transfer,

when z = 1 the output device informs the system that a word has been
accepted.

This sequence of control information is common between systems
connected asynchronously.
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An unreliable operation occurs if a control signal from an external device
is used for inputs to more than one flip-flop. This is because the
asynchronous signal may be changing from O to 1 or from 1 to O exactly
at the time when a clock pulse occurs. The transmission will be in error if
some flip-flop inputs detect the signal as a logic-1 while others detect it as
logic0. To prevent this uncertainty from happening, it is customary to
provide a synchronizing flip-flop for each asynchronous external control
signal, Then, if the flip-flop is not set during a given clock pulse (because
of signal transition), it will set on the next pulse. Only after the syn-
chronizing flip-flop is set does the system recognize the occurrence of the
external signal. The two flip-flops used for this purpose are F; and Fj,.

So far in the discussion we have stated in words the requirements for
the code converter circuit. The combinational circuit for the register that
performs the conversion can be obtained by using the design procedure for
sequential circuits outlined in Ch. 7. On the other hand, to design the
control network, we need some convenient representation, other than the
word description, to describe the needed sequence of operations for the
system. We shall now obtain a timing diagram and a flow chart and show
how they can help to derive the register transfer relations and the control
network.

Timing Diagram

The timing diagram for the code converter is shown in Fig. 124. The
clock pulses are drawn on top of the diagram and all system signal
transitions occur at the trailing edge of a pulse. The asynchronous signal w
from the input device may come at any time. Flip-flop F, is set with a
clock pulse if w = 1, and is cleared with the next clock pulse. When
F = 1, data is transferred to the register from the input device and output x
becomes logic-1 for one clock-pulse period. The decimal number in the
register is converted to the 2,4,2,1 code with the next clock pulse and
output y becomes logic-1; informing the output device of the availability of
a word. The asynchronous signal z from the output device may come at
any time. Flip-flop F, is set with a clock pulse if z = 1 and cleared with the
next clock pulse. When F, = 1, the register is cleared and output y becomes
logic-0. At this point the system is ready to repeat the cycle.

The control flip-flops for the system consist of Fy, F,, and some other
flip-flops that supply the required sequence. Let us designate the states of
those other control flip-flops by po, p1, p» etc. Each clock-pulse period is
then distinguished by a given state p; and the state of flip-flops F; and F,.
An identification sequence for each clock-pulse period can be assigned in
terms of control states and flip-flops as shown in the timing diagram.

The timing diagram gives the information needed for the design of the
code converter circuit. Although this representation is very convenient in
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Figure 124 Timing diagram for code converter

the initial phase of the design, it is somewhat ambiguous and imprecise. For
this reason we shall delay the derivation of the Boolean functions until a
better representation is formulated.

Flow Chart

The flow chart for the code converter is shown in Fig. 12-5. It consists
of function blocks, with the operation within each block specified by
symbolic relations. The flow chart can be derived directly from the word
statement of the problem or from the timing diagram.

To start the equipment operating properly when power is turned on, we
must have some means of bringing the circuit to an initial state. This may
be done by clearing all flip-flops with a manual switch. We shall assume
that each flipflop has a direct clear line from a manual switch and that
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these lines are independent of other flip-flop inputs. (Many commercial
flip-flops have such a “direct clear” input.)

The circuit stays in the initial state until the input signal w becomes
a 1. This causes flip-flop F, to set, which in turn causes a transfer of an
input word into register R. The next step is to convert the decimal code
and then send an output signal from y. When input z becomes a 1, flip-flop
F, is set which in turn clears the register and the circuit goes back to its
initial state. The information available in the flow chart is just another way
to represent the required sequence specified in the timing diagram. However,
this representation is somewhat more convenient for deriving the Boolean

functions.

Start

l

Clear All
Flip-Flops

!

Initial State
y=20

Input =R
0 =F

T

Convert Code
x =1

Figure 12-5 Flow chart for code converter
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To determine the control sequence for the circuit, we assume control
states p;, i = 1,2,3,...,and mark on the other side of each function box the
control state at which the operation is to be activated. The Boolean
functions can now be derived from the flow chart. However, we can achieve
a clearer representation with a control register state diagram and a list of
control functions and elementary operations as shown below.

Register-Transfer Relations

The control functions and elementary operations of a digital circuit can
be derived directly from the word specification of the system. However, a
timing diagram and/or a flow chart may sometimes facilitate the derivation.
Figure 12-6 shows the state diagram for the code converter sequence. We
start with initial state py. Input w should send the controller to the next
state, but since F; must be included as part of the control, we can take
the condition poF; for the next sequence. When F,; equals 1, the control
goes to state p; at which time the conversion takes place. At state p,, we
wait for the output device to respond through input z and then go to a
state specified by p,F,. When F, is a 1, the control goes back to state pg.

Figure 12-6 State diagram for control of code converter

Concurrent with the development of the state diagram for the control
register, we derive a list of control functions and elementary operations for
the system. These can be derived directly from the word specification or
from the flow chart. The derivation will not be repeated again because all
the information is already available in the flow chart. The control functions
and elementary operations for the system are:

poFyw: 1 = F,, 0=y
DoFy: input = R, 0=F,
p,. convert, 1 =x
D2 0=x 1=y
p2F’22: 1= Fg

p2Fy: 0 = R, 0=F,




Sec. 12-4 ASYNCHRONOUS TRANSFER 405
Derivation of Boolean Functions

The elementary operations and control functions listed above, together
with the control state diagram of Fig. 12-6, supply all the information
needed for deriving the Boolean functions for the system. The information
from the state diagram is used to derive the excitation table for the control
register. As shown in Table 12-2, the two flip-flops for the control register
are designated by F, and F,, while the outputs of F; and F, constitute
the input variables. When an input variable does not determine the next
state, it is marked with an X and is taken as a don’t-care condition. The

Table 12-2 Excitation Table for Control Register of Code Converter

Present Next
State Inputs State Flip-Flops Inputs
F, F, F, F, F, F, JF, KF, JF, KF,
Do 0 0 X 0 0 0 0 X 0 X
Do 0 0 X 1 0 1 0 X 1 X
j 0 1 X X 1 0 1 X X 1
D, 1 0 0o X 1 0 X o 0 X
D, 1 0 1 X 0 0 X 1 0 X

input excitation for the JK flip-flops is obtained from the state transition.
The simplified input functions for the control register are listed below.

The three states p, = 00, p; = 01, and p, = 10 are obtained by
decoding the outputs of flipflops F; and Fj, noting that state 11 is not
used. The requirements for activating flip-flops F, and F, and outputs x
and y are specified in the list of elementary operations. We can now collect
all the Boolean functions that describe the operation of the control circuit
and list them together:

JF, = pow KF, = po
JFy = pyz KFy = p,

JFy = FuF, KF; =1
JF, = F, KF, = F,
po = F4F; X = D1
pr = F; Yy =P
P2 =F,

Thus the control circuit is just another sequential circuit with four flip-flops
and a simple decoder.
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It is now necessary to design the combinational circuit part of the data
register. We need four flip-flops for each decimal digit since the input data
are decimal numbers represented in BCD. Each group of four flip-flops will
contain the same combinational circuit; it is sufficient to show the design
of a group of four flip-flops that form a decade. All other decades will
have identical circuits. Let us designate the four flip-flops of a typical
decade by Rs, R4, Ry, R,, where the subscript number designates the
weight of the corresponding bit of the code. Similarly, we designate the
input terminals of one decade by I3, I,, I,, I,.

The elementary operations to be performed on the register were listed
above and are repeated here using the defined symbols:

PoFy: I=R transfer in
Pi: (Recp) = Ra, 4525 1) convert code
Do F,: 0=R clear register

The transfer into and clearing of the register are two elementary opera-
tions that can be implemented by inspection. The flip-flop input functions
that achieve the code conversion can be obtained by means of an excitation
table using the procedure outlined in Sec. 7-4. The excitation table for the
code conversion is shown in Table 12-3. The present states are the decimal
digit in BCD; the next states are the corresponding digits in the 2, 4, 2, 1
code. Note that flip-flop R, does not change state and therefore, no input
is required for this flip-flop during the conversion.

The simplified flip-flop input function can be derived from the informa-
tion available in Table 12-3. These functions must be ANDed with control

Table 12-3 Excitation Table for Code Converter

Present Next
State State Flip-Flop Inputs

RyR,R,R, | RyR,R,R, | JR, KR, JR, KR, JR, KR, JR, KR,
0000 0000 0 X 0 X 0 X 0 X
0001 0001 0 X 0 X 0 X X 0
0010 0010 0 X 0 b.¢ X 0 0 X
0011 0011 0 X 0 X X 0 X 0
0100 0100 0 X X 0 0 X 0 X
0101 1 011 1 X X 1 1 X X 0
0110 1100 1 X X 0 X 1 0 X
0111 1101 1 X X 0 X 1 X 0
1 000 1110 X 0 1 X 1 X 0 X
1 001 1111 X 0 1 X 1 X X 0
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state p;. Including the transfer and clear elementary operations for the
register, we obtain the following input functions:

JRs = (RaRy + R4R )py + IgpoF, KRg = poF,

JR4 = Rgpy + I4poFy KR, = RyR(py + poF,
JR, = (Rg + RaR )Py + ILpoF, KR, = Rupy + pa2F,
JR, = I,poF, KR, = p,F,

This concludes the design of the code converter circuit. Note that the
most difficult part of the design is the derivation of the timing sequence
and control functions. Once the elementary operations and their sequence
are specified, the rest of the design is mechanized by the procedures
presented in Chs. 7 and 9.

12-5 DESIGN ALGORITHMS

An algorithm is a procedure for obtaining a solution to a problem. A design
algorithm is a procedure for implementing the problem with a given piece
of equipment. The development of a design algorithm cannot start until the
designer is firmly certain of two things. First, the problem at hand must be
thoroughly understood. Second, an initial configuration of equipment must
be assumed for implementing the procedure. Starting from the problem
statement and equipment availability, a solution is then found and an
algorithm formed. The algorithm is stated by a finite number of well
defined procedural steps.

The derivation of a design algorithm is a creative endeavor that requires
reasoning and the ability to think logically. Many common digital system
design algorithms can be found in books and in the professional literature,
so it is usually wise to search the literature for existing algorithms before
starting to develop new ones.

We shall now demonstrate the development of a design algorithm by
going through an example. We shall start from the statement of the
problem and proceed through the design until the Boolean functions are
obtained.

Statement of the Problem

In Sec. 99 we stated two algorithms for the addition of binary numbers
when negative numbers are represented in sign-complement. The problem
now is to implement with hardware the addition and subtraction of two
fixed-point binary numbers represented in sign-magnitude. The definition of
fixed-point, sign-magnitude representation of binary numbers can be found
in Sec. 8-5.
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The addition of two numbers stored in finite length registers may result
in a sum that exceeds the storage capacity of a register by one digit. The
extra digit is said to cause an overflow. The circuit must provide a flip-flop
for storing a possible overflow bit.

Equipment Configuration

The two numbers to be added or subtracted are stored in registers 4 and
B. Each register contains n flip-flops for storing the magnitude of an n-bit
number. The signs of 4 and B are to be stored in flip-flops A and B,
respectively. The flip-flop that stores the overflow bit is labeled E. The
registers and flip-flops are shown in Fig. 12-7.

Sign Magnitude
By B Register q, (add)
Overflow Local | (subtract)
Control 9s
E
- —+x (operation
Ay A Register terminated)

Figure 12-7 Block diagram of sign-magnitude addition and subtraction

We shall assume that the two numbers and their signs have been trans-
ferred to the respective registers and that the result of the operation is to
be transferred to register A. Two input signals give the command to add
(q,) or to subtract (q¢y), and an output signal x specifies the end of
operation. The circuit local control communicates with the system main
control through the input and output variables. The local control accepts
one input signal from main control and proceeds to provide the required
sequence of commands for the register operations. Upon completion of the
operation, the local control informs the main control with output x that
the sum or difference is in register 4.

Derivation of Algorithm

The representation of numbers by sign-magnitude is familiar because it is
used for paper and pencil arithmetic calculations. The procedure for adding
or subtracting two signed binary numbers with paper and pencil is simple
and straightforward. A review of this procedure will be helpful for deriving
the design algorithm.

We designate the magnitude of the two numbers by A4 and B. When the
numbers are added or subtracted algebraically, we find that there are eight
different conditions to consider, depending on the sign of the numbers and
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the operation performed. The eight conditions may be expressed in a
compact form as follows:

(#4) + (#B)

if the arithmetic operation specified is subtraction, we change the sign of B
and add. This is evident from the relations:

(#4) — (+B) = (34) + (-B)
(A) — (=B) = (z4) + (+B)

This reduces the number of possible conditions to four, namely:
(#4) + (#B)

When the signs of 4 and B are the same, we add the two magnitudes
and the sign of the result is the same as the common sign. When the signs
of A and B are not the same, we subtract the smaller number from the
larger and the sign of the result is equal to the sign of the larger number.
This is evident from the following relations:

if4 2B ifA<B

(+4) + (+B) = +4 + B)
(+4 + (-B) = +A4 -B) = «(B-4)
(-A) + (+B) = A4 -B) = +B -4)
(-4) + (-B) = -(4 +B)

This concludes the algorithm for adding or subtracting two sign-
magnitude numbers with paper and pencil. But how is it to be implemented
with the equipment available in Fig. 12-7? For this we need a design
algorithm.

To derive a design algorithm, it is necessary to have a broad knowledge
of digital systems and their processing capabilities. Since various alternatives
for performing a given task are usually available, it is wise to evaluate their
relative complexity, cost, and speed of operation before making a choice. A
conscientious designer does not use any design algorithm that comes his
way. He investigates the various alternatives under the given constraints and
then arrives at the best solution available.

For the example considered here, we find that we must choose among a
few alternatives. For example, consider the subtraction operation. We can
implement it with full-subtractor circuits (Sec. 4-4), or by the complement
and add method discussed in Sec. 1-5. Moreover, the relative magnitude of
the two numbers can be found with the comparator circuit of Sec. 4-6, by
the method of Prob. 9-24, or by the comparison method of Sec. 9-9, by
checking for a borrow after subtraction, or by some other method. The
best and most convenient method must be chosen.
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We shall not elaborate here on the merits and disadvantages of the
various methods available. It would take us too far afield and involve a long
and tedious discussion. We shall choose one method for implementing the
arithmetic operations and proceed to show the other steps necessary to
complete the design.

The best method for subtracting two binary numbers when adder circuits
are already available is by the complement method introduced in Sec. 1-5.
By this method, there is no need for comparing the relative magnitudes of
the numbers since the end carry gives the required information. The
algorithm is proven in Sec. 1-5 and is repeated here for convenience.

The subtraction of two positive binary numbers 4 — B may be done as
follows:

(1) Add the minuend 4 to the 2’s complement of the subtrahend B.
(2) Inspect the result for an end carry.
(2) if an end carry occurs, discard it;

(b) if an end carry does not occur, take the 2’s complement of the
number obtained in step (1) and place a negative sign in front.

In other words, when performing A — B by the above algorithm, a
positive result is detected from the presence of an end carry. A negative
result does not generate an end carry and gives the answer in 2’s comple-
ment, so recomplementation is needed to change the number to the sign-
magnitude representation. )

We are now ready to state the design algorithm. We shall use some of
the rules from the previous algorithm and perform subtraction by comple-
menting the subtrahend.

(1) If the arithmetic operation specified is to subtract; change the sign
of the subtrahend B.

(2) If the signs of A and B are equal, add the two numbers. Let the
sign of the result be the same as the sign of 4, and set the overflow
flip-flop with the end carry.

(3) If the signs of 4 and B are not equal, take the 2’s complement of
the negative number and add it to the positive number. Check the
end carry of this addition.

(a) If the end carry is 1, make the sign of the result positive and
discard carry.

(b) If the end carry is O, take the 2’s complement of the number
and make the sign of the result negative.
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Note that we do not have a design algorithm unless we can implement
every operation stated with the given hardware. We know that we can
detect the operation, the sign of a number, and the end carry with outputs
of flip-flops or logic gates. We also know that adding two numbers, taking
the 2°s complement, changing the sign, and setting the overflow flip-flop
can be accomplished with register operations. So the above algorithm is a
design algorithm.

Flow Chart Representation

A flow chart is a convenient way to specify the sequence of procedural
steps and decision paths for an algorithm. A flow chart for a design
algorithm would normally use the variable names of registers and inputs
defined in the initial equipment configuration. A flow chart translates an
algorithm from its word statement to an information flow diagram that
enumerates the sequence of register operations together with the conditions
necessary for their execution.

The flow chart of Fig. 12-8 shows how we can implement sign-magnitude
addition and subtraction with the equipment of Fig. 12-7. An operation is
initiated by either input g or input q,. Input g initiates a subtraction
operation, so the sign of B is complemented. Input g, initiates an add
operation and the sign of B is left unchanged. The next step is to compare

the two signs. The decision block marked with Ag:Bg symbolizes this
decision. If the signs are equal, we take the path marked by the symbol =.
Otherwise we take the path marked by the symbol #. For equal signs,
contents of 4 are added to the contents of B and the sum is transferred
to A. The value of the end carry in this case is an overflow, so the E
flipflop is set if C, + ; = 1. The circuit then goes to its initial state and
output x becomes a 1.

If the signs are not equal, we check for a negative sign. The sign
flipflop that is equal to 1 represents a negative sign, so the corresponding
magnitude is changed to its 2’s complement. Note the symbol used for 2’s
complement. It combines the symbol for 1’s complement and the symbol
for incrementing by 1. The next step is to add the two numbers and check
the end carry C, , q. It is convenient to transfer the value of the end
carry temporarily into the E flip-flop. Then if £ = 1, we make the result
positive and clear £ since this is not an overflow. If £ = 0, we complement
again and make the result negative. The circuit then goes to its initial state
and output x becomes logic-1.

This concludes the derivation of the design algorithm. We shall now
proceed to design the circuit and derive the Boolean functions for the
control circuit and the registers.
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Initial State

=1

(subtract) g 9, (add)

(Es) = Bs
Ag: Bs

+ —

: (A)+ (B) = A4
Check signs ‘

_®- (Cnit) = E

Bs=1 As=1
(B)+1~B (A)+1=4

I |
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(4) +(B)=4
(Cn+l) =E

¢
I

=0
A+1=4 0~E
1 =A4; 0 =4

Figure 12-8 Flow chart for sign-magnitude addition and subtraction

Register-Transfer Relations

The flow chart of Fig. 12-8 gives all the information needed to design
the circuit. We assume the availability of a control register with states p;
i=1,2,3,..., and develop the state diagram shown in Fig. 12-9. The
elementary operations for the system and the control functions that cause
their execution are as follows:

Do: 1=x initial state

pi: (By) = B, complement sign of B

Apy,: A)+1=>4 2’s complement of 4
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Bp,: (B)+1=B 2’s complement of B

pa: A)+B)=A4,(C, + 1) =>E add and set overflow

Ep,: 0=E, 0= 4 end carry; sign is positive
Ep,: (A+1=>4,1= A no end carry; complement again

and make the sign negative

In the state diagram, the variable s is used to designate the relation
between the signs. This signal must be generated in the control circuit by
forming the equivalence of A; and B,. Note that we have assumed that the
execution of the 2’s complement can be done with one elementary opera-
tion; i.e., with one clock pulse. In previous chapters this was done with two
elementary operations: complement and increment. The combinational
circuit that implements the 2’s complement with one elementary operation
is derived subsequently.

9,= add

q, = subtract
s = 1 signs alike
s = O signs alike
s =A; OBs

Figure 12-9 State diagram for control register

The derivation of the state diagram and symbolic relations from the flow
chart requires a certain amount of logical reasoning and trial and error. An
effort is made to minimize the number of states in the control register by
using other flip-flop variables in the control functions. Thus two different
elementary operations are listed for states p, and p,; the one executed is
determined from the state of flip-flop 4, B, or E.

Design of Control Logic

The control register can be designed from the information in the state
diagram of Fig. 12-9. Since the control register needs five states, we use
three flip-flops, F,, F,, and F5. We use T flip-flops for the control and
other registers.

The state table for the control register is shown in Table 12-4. The
inputs to the control register are q,, g, and s. When an input does not
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Table 124 Excitation Table for Control Register

Present Next

State Inputs State Flip-Flop Inputs

F, F, F,|a a4 s | F, F, F, | TF, TF, TF,
Do 0 0 0 0 0 X 0 0 0 0 0 0
Do 0 0 0 X 1 X 0 0 1 0 0 1
Do 0 0 0 1 X o0 0 1 0 0 1 0
Do 0 0 0 1 X 1 0 1 1 0 1 1
141 0 0 1 X X 0 0 1 0 0 1 1
P 0 0 1 X X 1 0 1 1 0 1 0
P 0 1 0 X X X 0 1 1 0 0 1
Ds 0 1 1 X X 0 1 0 0 1 1 1
Ps 0 1 1 X x 1 0 0 0 0 1 1
Pa 1 0 0 D.¢ X X 0 0 0 1 0 0

determine the next state, it is marked by an X. Note that a separate row is
used for each transition. Thus, state py, can go to four different next states,
depending on the presence or absence of certain inputs. The T flip-flop
input excitations are equal to 1 for a change of state and O for no change
of state.

The simplified input functions for the flip-flops in the control register
can be derived using six-variable maps. In general, the formal combinational
design procedure with maps may not be effective when the problem
involves many states and many input variables. The design of a control
register can be simplified when the decoder outputs are used to designate
the present states. The procedure is to find the Boolean functions for the
decoder and then derive the flip-flop input functions using these outputs. In
this particular example, the decoder can be simplified because of the three
unused states in the control register.

The list of Boolean functions below specifies the combinational circuit for
the control. Variable s compares the two signs, and output x is a 1 when
the circuit is in the initial state p,. A straight binary assignment is chosen
for the states. The decoder outputs po-p4 identify the states of the control
register. The flip-flop input functions are derived from the excitation table
by inspection.

s=AsBs+AlsB; Po =F2F‘;Fﬂl

X = Po py = FoFy
TF3 =s'ps + p, py = F, Fy
TF; = qupo + p1 + P3 ps = F,F,

TFy = (qs + q,5)0 + 5P1 + P2 + P3 pPa = F3
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Flip-Flop Input Functions

The procedure for deriving the flip-flop input functions for registers 4
and B and flipflops A, B, and E from the list of elementary operations is
outlined in Ch. 9. All the elementary operations were encountered before
except that for the 2’s complement. The combinational circuit that changes
a number stored in a register to its 2’s complement during one clock pulse
can be found by any one of the three methods listed in Sec. 1-5. One
method states that we start from the least significant bit and check the bit
values. All bits up to and including the first 1 are left unchanged; all higher
significant bits after the first 1 are complemented. We now use this pro-
cedure to obtain the combinational circuit. (See also Prob. 12-20).

Let p be the control function for the 2’s complement elementary opera-
tion to be executed in register 4. We use variable y; for each stage i to
designate the occurrence of a 1 in some previous stage j <i. Flip-flop A4; is
complemented if y; = 1 and not complemented if y; = 0. If we start with
y; = 0, the first flipflop 4, is never complemented as required (since the

Table 12-5 Sign-Magnitude Adder-Subtractor Flip-Flop Input Functions

Register Transfer Relations Flip-Flop Input Functions

A flip-flop

Ep,: 0 =4, TA, =EA' +EA)p,

'Pail = A

B flip-flop

py: By = By TB, =p,

E flip-flop

Py (Cpy) = E _ , ,

Ep,: 0= F TE = (ECpyy * E'Cpyy)p, + Ep,

B register

Bp,: B)+1=58 TB; =z fori=1,2,...,n
zi+l = Bspz(z,' + Bi)
z, = =0

A register

Agp,:A)+1=4 TA; =(CB;+ CiBp, +y;

Py: A+ (B) =4 Cie1 =AB; +4;C; + B,G;

Yirg =AP 0+ AY
fori=1,2,...,n

c, =0

B2 =0
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first bit is either O or the first 1). The value of y; for all higher-order
stages is determined from the relation

yi+1=p(yi+Ai) i=1,2,3,..,n

That is, y; 4+ ; = 1 if control function p = 1 and either 4; = 1 (giving
the first 1) or y; = 1 (because the first 1 has already occurred).
The execution of the 2’s complement elementary operation with T

flip-flops is then:

TA; = y; i=1,2,...,n
y1+1 p(yz+Az)
y1 =0

The derivation of the register input functions for the other elementary
operations is straightforward. The final results are listed in Table 12-5.

¥2-6 BINARY MULTIPLICATION

Algorithms for arithmetic operations are very important for the design of an
arithmetic unit of a digital computer. Many of these algorithms can be
found in computer design books (references 1-5) or in professional
journals.* Some algorithms for fixed-point binary addition and subtraction
were introduced in Chs. 1 and 9 and in Sec. 12-5. In this section, we
derive a binary multiplication algorithm and obtain the symbolic representa-
tion for its implementation. The purpose is to demonstrate the logical
reasoning involved in the development of one other design algorithm. For a
catalog of available arithmetic algorithms, including division, square root,
floating-point operations and decimal arithmetic, the reader should consult

the references.
Multiplication of two fixed-point binary numbers in sign-magnitude

representation is done with paper and pencil by successive additions and
shifting. This process is best illustrated with a numerical example. Let us
multiply the two binary numbers 10111 and 10011.
23 % 10111  multiplicand
19 10011  multiplier
10111
10111
00000 +
00000
© 10111

437 110110101  product

*One of the better journals is the JEEE Transactions on Computers.
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The process consists of looking at successive bits of the multiplier, least
significant bit first. If the multiplier bit is a 1, the multiplicand is copied
down; otherwise, zeros are copied down. The numbers copied down in
successive lines are shifted one position to the left from the previous
number. Finally, the numbers are added; their sum forms the product.

The sign of the product is determined from the signs of the multiplicand
and multiplier. If they are alike, the sign of the product is plus. If they are
unlike, the sign of the product is minus.

When the above process is implemented in a digital machine, it is
convenient to change the process slightly. First, instead of providing digital
circuits to store and add simultaneously as many binary numbers as there
are 1’s in the multiplier, it is convenient to provide circuits for the
summation of only two binary numbers and successively accumulate the
partial products in a register. Second, instead of shifting the multiplicand to
the left, the partial product is shifted to the right, which results in leaving
the partial product and the multiplicand in the required relative positions.
Third, when the corresponding bit of the multiplier is a O, there is no need
to add all zeros to the partial product since it will not alter its value. The
previous numerical example is repeated here in order to clarify the proposed
multiplication process.

multiplicand: 10111

multiplier: 20_11.

1st multiplier bit = 1, copy multiplicand. 10111

Shift right to obtain 1st partial product. 010111
2nd multiplier bit = 1, copy multiplicand. 10111

add multiplicand to previous partial product. 1000101

shift right to obtain 2nd partial product. 1000101
3rd multiplier bit = 0, shift right to obtain 3rd partial product. 01000101
4th multiplier bit = 0, shift right to obtain 4th partial product. 001000101
Sth multiplier bit = 1, copy multiplicand. 10111

add multiplicand to previous partial product. 110110101

shift right to obtain 5th partial product = final product. 0110110101

Figure 12-10 shows a block diagram for implementing the binary
multiplier. There are three registers, B, M, and A4, that hold the multi-
plicand, multiplier, and partial product, respectively. In addition, there is a
C counter that is initially set to hold a binary number equal to the number
of bits in the multiplier. The counter is reduced by one after forming each
new partial product. When the contents of the counter reach zero, the
partial product becomes the required product and the process stops.

The addition is done between the A and B registers, with the partial
product transferred to the A register. Both the A and M registers can be
shifted to the right, with the least significant bit of A shifted into the most
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Bs -
multiplicand
B Register C counter — qnf
Control (multiply)
L .~ X
(operation
terminated)
As M M,
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E [ A Register M Register
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Pro&uct

Figure 12-10 Block diagram for binary multiplier

significant bit position of M. After each shift, one bit of the partial product
is shifted into M, pushing the multiplier bits one position to the right. In
this manner, the least significant flipflop in the M register, designated by
M;, will hold the corresponding bit of the multiplier which must be
inspected next.

The signs of the multiplicand and multiplier are in flip-flops By and M,
respectively. The sign of the product is in Ag. The overflow flip-flop £ is
needed for a temporary overflow of the partial product. Input qmq initiates
the multiplication process; output x designates the completion of the
operation.

A design algorithm for the multiplication of two binary numbers can
now be stated as follows:

(1) Check the signs of the multiplicand and multiplier. If they are alike,
make the sign of the product plus. If they are unlike, make the sign
of the product minus.

(2) Start with an initial partial product of zero. Check successive bits of
the multiplier, beginning with the least significant bit:

(a) If the corresponding multiplier bit is a 1, add the multiplicand to
the partial product.

(b) If the corresponding multiplier bit is a 0, leave the partial
product as is.

(3) Shift the new partial product once to the right to obtain the next
partial product. Proceed to check the next multiplier bit and repeat
2(a) or 2(b).

(4) The nth partial product (n being the number of bits of the multi-
plier) is the required product.
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Figure 12-11 is a flow chart for implementing the algorithm with the
hardware shown in Fig. 12-10. Initially, the registers and counter are set to
their corresponding values. The signs are compared, and A; is set to
correspond to the sign of the product. The low-order bit of M, M,, is
tested. If it is a 1, the multiplicand in the B register is added to the
present partial product in the A register. The 4 and M registers, when
taken as one long register, are symbolized by AM. This combined register is
shifted once to the right to form the new partial product. Simultaneously,
the C counter is reduced by 1. This process is repeated until the content of
the C counter equals zero. Note that the partial product formed in A4 is
shifted into M one bit at a time and eventually replaces the multiplier. The
final product is then stored in both 4 and M, with A holding the most
significant bits and M holding the least significant bits.

From the flow chart, we can derive the control state diagram and the
elementary operations needed for implementing the multiplication. The state

Initial State

multiplicand in B
multiplier in M

qp, (multiply)

0=4A4
n=C

14, 0=~ 4,

M,

(A)+(B)=A
(Chyp~ E

(AM;) ~AM;_,, (E) = Ap
(C)y—1=C

+0 N =0

<)

Figure 12-11 Flow chart for binary multiplier
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diagram for the control sequence is shown in Fig. 12-12. The control
functions and elementary operations are as follows:

Do 1=x initial state

Pi: 0=A4,n=>C clear A, set counter to n

M,@B)p;: 0=4 signs alike, product is
positive

M@ Byp; : 1=4, signs unlike, product is
negative

P2 A+MB=>4,C, + )=F form partial product

Pi: AM) = AM; _ {, (E) = 4,, shift right both A and

-1=cC M registers, decrement

counter

During initial state p,, the local control generates an output x = 1 to
inform the system control of its readiness to execute a multiplication
operation. When command signal q,, is received, the control goes to state
pPi. At this state, register 4 is cleared, the counter receives a number n
equal to the number of bits in the multiplier, and the sign of the product
is determined. From here on, the control stays in state p, or p; until the
content of the C counter reaches zero. When the multiplier bit M, is a 1,
the control goes to state p, and an ADD elementary operation is executed.
Registers 4 and M are shifted once to the right during control state pj,
and the counter is decreased by 1. When the counter reaches zero, the
control goes back to the initial state p, and output x becomes a 1 again.

The circuit for the control register can be obtained from the state
diagram. The input functions for the registers can be obtained from the list
of elementary operations. This is a straightforward process and will be left
for an exercise.

M;=0

Figure 12-12 State diagram for control register



12-1.

12-2.
12-3.

12-4.

12-5.

12-6.

PROBLEMS 421

PROBLEMS

It is necessary to design an adder for decimal digits represented in

the excess-3 code. Show that the correction after adding two digits

with four full-adders is as follows:

(a) the output carry is equal to the uncorrected carry;

(b) if output carry = 1; add 0011;

(c) if output carry = 0; add 1101 and ignore the carry from this
addition.

Show that the excess-3 adder can be constructed with seven full-
adders and two inverters.

Design a decimal adder for digits represented in the 2, 4, 2, 1 code.

Design a six-bit binary to BCD converter. Use adders to add the
weighted values of the binary digits. For example, binary 111111 is
obtained by performing the BCD addition of the numbers 32 + 16
+8+4+ 2+ 1.

Draw a block diagram of a circuit that adds four decimal digits in
BCD. How many flip-flops are needed? How many BCD adders are
needed?

The state diagram below represents the timing sequences of a control
register.

(a) How many different state sequences are there and what values
of variables generate them?

(b) Design the control register with three T flip-flops and a decoder.

(c) Design the control register with five D flip-flops and without a
decoder.

y=0

The following elementary operations specify a four-state control
register G. The binary state assignment is po = 00, p, = 01,
pa = 10, p3 = 11.
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Xpo: G+1=G
Ybo: 10 =G
Zpo - 11 =6
py tpy +p3: G)+1=¢

(a) Draw the state diagram for the control register.
(b) Design the control register with JK flip-flops.

A system has two registers A and B and four control flip-flops F,
F,, F3, Fy. Register A4 receives data words from input terminals 7.
Data words are transferred from register A to register B and from
register B to an output device. Input variables x and y are logic-1
during one clock pulse period and communicate synchronously with
the input and output devices, respectively. The system operation is
described by means of register-transfer relations as follows:

XFIZ I:FQ

Fngi (I)ﬁA, I:Fg

FQI 0:>F1

Frli 0=F,

FyF,: (4) = B, 0=A4, 0=>F;,1=>F,, 1=>F,
yF4: 0= B, 0= F,

(a) Draw a timing diagram for the system.

(b) Explain the function of flip-flops Fy, F5, F3, F4 and inputs x,
y.

(c) Obtain the input functions for the control flip-flops.

Design a digital system that performs the following sequence of

operations:

(1) Accepts two binary numbers in sign-magnitude representation.
Each magnitude is three bits long and is transferred into register
A or B, respectively. The signs are transferred into flip-flops 4
and By, respectively.
(2) (a) If (x4) > (*B), multiply contents of 4 by 2 and transfer
the product out.
(b) If (x4) < (*B), divide contents of B by 2 and transfer the
quotient out.
(c) If (4) = (*B). transfer the number out unchanged.

Show that the code converter circuit of Sec. 12-4 can be designed
with combinational circuits only; i.e., without any flip-flops.

Change the code converter of Sec. 12-4 to operate as follows: A
two-position switch determines an input or output operation. When
the switch is in the input position, it clears a flip-flop and the
operation is identical to the one described in the text. When the
switch is in the output position, it sets a flip-flop and all operations
reverse; i.e., data words are transferred from the output device to
the input device. The conversion is from the 2,4,2,1 code to BCD;
and the function of the control line reverses. A line is provided for
the external devices to inform them of the required operation.
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A digital system consists of two processor registers 4 and B and a
control register F. Each of the processor registers has seven JK
flip-flops. The control register has three T flip-flops and a decoder.
The system has seven input data lines designated by I~/ and an
input control line s that starts the operation. The control state
diagram is shown below. The elementary operations for the processor
register are as follows:

Do: initial state

pPi: (I = B

pr: (4 + B) = 4
D3: ) = 4

Pa: 4) + 1 = 4

ps: (B) = B

Dé: (B) +1 = B

pq: 4 + B) = 4

Derive the Boolean functions for the system.

Derive an algorithm for detecting an overflow during the addition of
two numbers in sign-2’s complement representation. Use the carry
out of the sign-bit position and the carry out of the most significant
bit position of the binary number that goes into the sign-bit posi-
tion. Show that an overflow occurs if these two carries are different
(for another algorithm see Prob. 9-19).

Derive the flip-flop input functions of Table 12-5.

State an algorithm for adding and subtracting decimal numbers in
sign-magnitude BCD representation.

Design a circuit that converts a decimal number stored in a register
in BCD to its 10’s complement.

Design the circuit specified in Sec. 12-5 using two elementary opera-
tions for the 2’s complement; i.e., (4) = 4 and (4) + 1 = A.

The addition of a binary number stored in register A with the 2’s
complement of another number in register B can be done as follows:
take the 1’s complement of B; make the input carry C; into the
lowest significant position equal to 1; and add the contents of 4
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12-19.

12-20.
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12-22.

12-23.

12-24.

12-25.
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and B (this will add 1 to the sum). Design the circuit specified in
Sec. 12-5 using this method for obtaining 2’s complements.

Design the circuit specified in Sec. 12-5 using adders (Sec. 4-3) and
subtractors (Sec. 4-4). The required additions should be done with
adders and the required subtraction with subtractors. Combine the
adder and subtractor circuits to form one circuit that either adds or
subtracts depending upon a given control signal.

Prove the algorithm stated in Sec. 9-9 for the addition of two
binary numbers in sign-2’s complement representation.

Design a four-bit register with T flip-flops to convert a binary
number to its 2’s complement when input p = 1 (this is identical to
Prob. 7-9). Using the result obtained in this problem, derive the
procedure adopted in Sec. 12-5 for the 2’s complement elementary
operation.

Derive the Boolean functions for the binary multiplier of Sec. 12-6.

Show the contents of registers 4, B, and M and of counter C
(Fig. 12-10) after each clock pulse during the process of multiplying
the two binary numbers 10111 and 10011,

For the binary multiplication described in Sec. 12-6, explain the
advantages and disadvantages of the following:

(a) forming the partial sum

(b) shifting right instead of left

(c) destroying the multiplier

(d) having a product twice as long as the multiplier or multiplicand
(e) using a counter that counts down instead of up

(a) Show that the multiplication of two n-digit numbers in base 7
gives a product of no more than 2n digits in length.

(b) Show that the above statement implies that no overflow occurs
at the completion of the multiplication process described in
Sec. 12-6.

(c) What similar statement can be made concerning the length of
the partial products?

Derive a design algorithm and obtain the control state diagram and
register transfer relations for the multiplication of two binary
numbers with negative numbers represented in sign-2’s complement.

Derive a design algorithm and obtain the control state diagram and
register-transfer relations for each of the following arithmetic opera-
tions (consult the references listed for this chapter):

(a) Fixed-point binary division. Use any representation for negative
numbers.

(b) Square-root of a fixed-point positive binary number.

(c) Addition and subtraction of two binary floating-point numbers.

(d) Multiplication of two fixed-point decimal numbers.
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12-27. (a) Design a binary-to-BCD converter; i.e., a circuit that converts
binary numbers to decimal numbers in BCD.
(b) Design a BCD-to-binary converter; i.e., a circuit that converts
decimal numbers in BCD to binary.
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APPENDIX

ANSWERS TO SELECTED PROBLEMS
Chapter 1

1-1. 0, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, 110, 111, 112, 120,
121, 122, 200, 201.

1-2. (a) 1313,102210
(b) 223.0, 11314.52
(c) 1304, 336313
(d) 331, 13706

1-3. (100021.1111...)3; (3322.2)4; (505.333...)7; (372.4)5; (FA.8),6.
1-4. 1100.0001; 10011100010000; 1010100001.00111; 11111001110.
1-5. 2.53125; 46.3125; 117.75; 109.875.

1-6. decimal binary octal hexadecimal
225.225 11100001.001110011 341.16314 E1.399
215.75 11010111.110 327.6 D7.C
403.9843 110010011.111111 623.77 193.FC
10949.8125 10101011000101.1101  25305.64 2AC5.D

1-7. (a) 73.375
(b) 151
(c) 785
(d) 580
(e) 0.62037
) 35
(g) 8.333
(h) 260

426
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1-8.

1-9.

1-10.
1-14.

1-15.

1-24.

1-25

1’s complement:
2’s complement:

ANSWERS TO SELECTED PROBLEMS

0101010; 1000111; 1111110; 01111; 11111.
0101011; 1001000; 1111111; 10000; 00000.

427

9’s complement: 86420; 90099; 09909; 89999; 99999.
10’s complement: 86421; 90100; 09910; 90000; 00000.
(17511
(a) six possible tables
(b) four possible tables
(a) 1000 0110 0010 0000
(b) 1011 1001 0101 0011
(c) 1110 1100 0010 0000
(d) 1000011 0101100

. 0000, 00Ot, 0010, 0011, 0100, 0101, O110, O111, 1011, 1100,
1101, 1110.

. 00001, 01110, O1101, O1011, 01000, 10110, 10101, 10011, 10000,
11111.

. 000, 001, 010, 101, 110, 111, representing 0, 1, 2, 3, 4, 5,
respectively.

. two bits for suit, four bits for number, J = 1011, Q = 1100,
K =1101.

. (a) 0000 0000 0000 0001 0010 0111
(b) 0000 0000 0000 0010 1001 0101
(c) 11100111 1110 1000 1111 0101
(a) 597 in BCD
(b) 264 in excess-3
(¢) not valid for 2421 code of Table 1-2
(d) FG in alphanumeric

. 00100000001 + 10000011010 = 10100011011.

1-26. L = (4 + B) - C.

Chapter 2

2-1.

2-2.

2-5.

closure, associative, commutative, distributive; identity for + is 2;

identity for ¢ is 0; no inverses.

All postulates are satisfied except for postulate 5; there is no

complement.

(a)
(b)
(©)
(d)
(e)
®

x
pd

y

xz + yz
0

yx +w)
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26. (a) A'B'+BA + 0O
(b) BC+ AC
(c) A+ CD
(d 4+ B'cD
2-7. (a) 1
(b) B'D' + AWD + BC)
(c) 1
(d) ABC + A'D(BC' + B'C)
2-8. (a) 1
b)) 1
2:11.(b) F=(x"+») + (x +») + (¥ +2z) has only OR and NOT
operators.
(¢) F=1[(xp) - &%) * »'z)] has only AND and NOT operators.
2-12.(a) T, =A'B + ")
(b) T, =A+BC=T,
2-13.(a) X (1,3,5,7,9, 11,13, 15) =11 (0, 2, 4, 6, 8, 10, 12, 14)
() 2 (1,3,5 9,12,13,14)=1 (0, 2, 4, 6, 7, 8, 10, 11, 15)
(c) Z(0,1,2,8,10,12,13,14,15) =11 (3,4, 5,6,7,9, 11)
(d X2 (,1,3,7=1I(, 4,5, 6)
(e) 2 (0,1, 2, 3,4,5,6,7), no maxterms.
) 23,56, 7)=01(,1,2,4)
2-14. (@) T (0, 2, 4, 5, 6)
)y I, 3,45 7,8,9, 10, 12, 15)
) 2,2 4,5)
d 2 (5, 7,8,9, 10, 11, 13, 14, 15)
2-18. x/y = xy'; y/x = x'y. Since xy’ # x'y then x/y # y/x.
2-19. See Sec. 5-2.
2:20. F=x®y=x'y +xy';(dvalof F)=(x"+p) (x +y")=xy +x'y' = F
Chapter 3
3-1. (@ vy
(b) ABD + ABC + BCD
(c) BCD + A'BD'
d) wx + wx'y
3-2. (@) xy +x'z
) C +A'B
(c) a + bc
d =xy +xz+yz
33. (a) D+BC
(b) BD+ B'D'+ A'Bor BD +BD' + 4'D'

©)

In' + kK'm'n
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3-4.

3-6.

3-7.

3-8.

3-10-

3-12.
3-13.

(d)
(e)

(a)
(b)
©

(a)
(b)
(c)

(a)
(b)
()
(a)
(b)

©)
(d)
(e)

(a)

(a)
(b)
(a)
(b)
(©)

(d)
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B'D' + A'BD + ABC'

xy' + x'z + wx'y

A'B'D' + B'CD' + AD'E

DE + A'B'C + B'CE’

BDE' + B'cD' + BD'E' + A'B'D' + CDE'

Fl =H(Oa 3’ 5> 6);F2 =H(0’ 17 2: 4)
Fy=x'y'z+x'yz' + xy'z2' + xyz; Fy = xy + xz + yz
Fi=(x+y+2)x+y +2) " +y+2) &' +)y +2)
Fp=x+y)(x +2z)(y +2)

y

(C+B)(A+B)(A+CH+D)

(w+2z)(x' +2)

z'+xy=(x+z')(y+z')

CD + A'BCD' + ABCD' =(4 +B' +D)(4' + B+ D) (C+ D)
Cc + D"

A'C +AD' +BD =4 ' +D)Y(C' +D)UA +B + )

BD +ACD + ABD=(U4' +B)YB+D)B +C+ D)

wz +rwx +vwz =0 + W)W +t2)wrx+2)ptw+z)

X — X —
y— Z—
b4 y—

7' —
F=1

F=cD + B'D + ABCD
F=A4'C+BD;A'(C+D)B +0

Xz +wz, W +2) @&+ 2)

AC+ CE + A'CD; 4" +C)(C+D) 4 + C + D)
or AC+ CD' + ACE; (4' + C) (C+E)(4 +C +E")
A'B+BE; 4 +B)B+E)

d = ABC'DE + AB'CDE' + ABCD'E
BD'(A4' + C)+ BD(A' + C'); [B' + DA+ CH] [B+ D'+ O]l;
(D' +BUA'+C) [D+BU +0O)]

3-14.f* g =x'yvz' + wy'z + wxy'z'
3-15. (a) F = A'CEF'G’
(b) F = ABCDEFG + A'CEF'G' + BC'D'EF
(¢) F = A'B'CDEF + A'BCD'E + CE'F + A'BD'EF
Chapter 4
4-1. inputs: a, b, ¢, d

output: F = gbc + abd + bed + acd + d'b'c’ + d'c'd +a'b'd

+b'cd;F=11(3,5,6,9,10,12) (cannot be simplified further)
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4-14.

4-15.

4-16.

4-17.
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output: A4 = sign, BCD = magnitude; 4 = wx + w'x'y' + wyz;
B=xy;C=yz +xy;D =2

inputs: Az, A,, Ay

outputs: By to By; By = A1; By = 0; B3 = A1A,; By = A (4,45
+ A343); Bs = A3(4; + A3); Bg = AyA;

outputs: w, x, ¥, z; w = apa bgb,; x = a,aé,bl + alblb:)
Y = aybob) + agayby + aghboby + agaibg; z = agbg

outputs: x, y, z; x =ayb, + ajagbg + by bgay;
y = ayapby + ayby by + ayagbibe + aybyby + ayagh)
+ ajapb;bg
aob;) + a'0b0
S=D=@x+y+z2)(x+y +2) &' +y+zZ) & +y +2)
C=@x+y)x+2) p+z); B=(G"+y) (x' +2) (v +2)
inputs: A,B,C,D; S=A®B®C®D; C; =AB'C+ ACD
+ AC'D + ABD' + B'CD + BCD' + A'BD; C, = ABCD

z

inputs: A, B, C, D
outputs: w, x, y, z; w = A'B'C'; x = BC' + B'C; y

inputs: A, B, C D

outputs: F4F3FyF; Fy = D; F, = CD' + C'D; F; = (C + D)
B +BCD';F, =B+ C+ D)4 + AB'C'D’

inputs: FgF FyF,

outputs: | S§S4828y LgLlsLoLy,

\

]
o
N
|
o

10! 10°
Ly =Lg =83 =0; Ly =Lg =F;8; =Fy; S, =Fy;
Sq4 = Fg

inputs: A, B, C, D

output : F = AB + AC

inputs: A, B, C, D

outputs: w, X, ¥, z; w=AB + AC'D'; x=B'C+BD + BC'D';
y=C€D' +CD;z=D

inputs: A, B, C, D

outputs: w, x, y, z; w=A4;x =A'C+ BCD + A'B+ A'D
¥y =ACD + A'C'D + ACD + A'CD' or y = AC'D’
+ B'C'D + ACD + B'CD' z =D

inputs: W, X, ¥y, 2
!
outputs: E IABCDI JE = wx +xy; A= wx'y';
10' 10°

B=wx+xy;C=wy +wxy;D =1z
(A =B)=(A430 B3) (4, ® B,) (1,41@31) (Ao ® By) ,
(A>B) = A3B5 + (A3 ® B3) A2B) + (43 ® B3) (:42 ® B,y) A, B,
+ (43 © B3) (4, ©® B,) (4, ® B,) A¢By
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(4 < B) = same as above except that the 4’s are complemented instead

of the B’s.
4-18.
A>B
A<B Outputs
- A=B
|
A>B A<B A=B A>B A<B A=B, Inputs:
A=A A4, 4,4,
AZA’I 4o B, B,By AzT Alo B, B, By B—=B,B,B,B,B,
AyAyA, B,ByB, 4, 4y | B, B,

4-19 and 4-20. FA circuits.

421.8, So | Y, Y, Y3 Y,

o ol|n I, I, I
0 1|0 I, I, I,
1 oo o I, I,
1 1]0 o o I

422, Ys = (I380 + I;S0) S; + (I4So) Si
Yo = (4So + I3S0) S,
Y; = U480) 8y
4-23. inputs: w, X, ¥, 2
outputs: Do = w'x'; Dy = w'y'z'; D, = w'y'z; D3 = xyz'; Dy = xyz;
Ds =x'y'z'; Dg = wy'z; Dy = wyz'; Dy = wyz; Dg = wx
4-24. inputs: A B C D
outputs: a=A4 + BD +BD +B'C;b=B+CD + CD';
c=B+C +D;d=BD+BC+CD + BCD,
e=BD +CD';f=4+BC +CD' + BD';
g=A+BC +CD +BC
nine AND, seven OR, three inverters

(b)
10 11 12 13 14 15 '
(c) change @, f, g from A to AC', change ¢ = A'B + B'C +4'D

I
I__II:II:|_|

10 11 12 13 14

4‘25.A1 =D1 +D3 +D5 +D7+D9;A2=D2 +D3 +Dﬁ +D7;
Ag =Dq + D5 + Dg + Dq; Ag = Dg + Do
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4-26. outputs: q, b, ¢, d, e, f; a=0;b=1;¢c=H+I;d=D+E
+F+G,e=B+C+F+G,f=A+C+E+G+1

4-27. Use two three-bit decoders as in Fig. 4-12 and 64 AND gates with
two inputs each.

430.Ig =1y =13 =I5 =0, I, =14 = 1,1, =11 =1

4-31. ; o -
0 —
I I
D>t rb—s e
I X 1,
x I3 § S 1 Iy S S
e , J
Z 4
Chapter 5

5-1. Figures: 4-8, 4-10, 4-12, 4-13, 4-15, 4-16, 4-17.
5-3. (a) See Prob. 2-18.

5-4. F=x'y'z + x'yz' + xy'z' + xyz

5-5. Full-adder
5-6.

X —]

x X'Yy:=xy
e
X = ’ — ’ xy
| / —— x'] = x y — / / ] / Ty

y

5-9. Six levels, five levels.

5-10. AND gate: fan-in = 6, fan-out = 10. Inverter fan-out = 10.

5-11. F = A'CD + ABD' + BC'D + B'CD'; F = A(BC' + CD') + A'(B'C + BD)
5-14.

—] Y —
X 7 —]
y——

x

y—

kr) 111

D

C

I

515.(a) F, =A+DE +CD' =4 +D)YA+C+E)
(b) F,=AB +CD +BC =B +D)B +C)U + )
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5-17.
5-18.

5-19.

5-20.

5-21.
5-22.
5-23.

5-27.

5-34.

(a) F =BD + D'(4B'C + 4'B'C)

() B'A+C +D)
(b) A'D + ABC
(¢) BD+BC+CD

F = x'y + xz (needs four NAND); F = (x' + z) (x + y) (needs 4 NOR)

@ @M +B+C)U+B +C+D)YA+B+C +D"
() (C+D)(C +D)UA+B) A +B)

F=B'(C +D"
F=ABC + A'B+ B = 4"+ B + C' (two NOR gates)

(a) Full-adder, F, is the sum, F, is the carry
(b) F=ABC + A'BC+ AB'C + ABC

AND/AND - AND, AND/NAND - NAND, NOR/NAND - OR,
NOR/AND - NOR, OR/OR — OR, OR/NOR - NOR, NAND/NOR
- AND, NAND/OR - NAND

input variables; 4, B, C, D, output variables; w, x, y, z.
W=A,x=A@®B y=x®@®Cz=y®D

535.C=x @ y @z @ P, three exclusive-OR gates.
5-36.
A— D
HA HA
B — C—s¢ E
L ,
: HA
G
537. F=(A4 @ B) (C ® D).
Chapter 6
65. 0J K'| Q@+ 1)=JQ +K'Q
000 0
001 0
010 1
011 1
100 0
1 01 1
110 0
111 1
66. QSD R| Q@+ 1)=S+RQ
0 0 0 0
00 1 0
0 1 0 1
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6-8.

6-12.

ANSWERS TO SELECTED PROBLEMS Appendix
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1
(a) SA=x'A";RA=x4;y =xA
() A +1)=x
00/0 11/0 11/1
01/1 01/0
NG
00/1 Inputs: xy
Output: S
. a counter with a repeated sequence: 00, 01, 10.
. x =1 binary sequence is: 1, 8, 4, 2, 9, 12, 6, 11, 5, 10, 13, 14, 15,
7, 3.
x = 0 binary sequence is: 0, 8, 12, 14, 7, 11, 13, 6, 3, 9, 4, 10,
5,2, 1.
PS Next state Output z
xy=00|xy=01]xy=10|xy=11 _ _ =10 =11
ABlAB | AB| AB | ap |70 w0L]xy x>
0 0] 10 00 11 01 0 0 0 0
0 1] 01 01 10 11 1 0 0 0
1 0) 10 10 00 10 0 0 0 1
1 1] 10 10 10 10 1 0 0 1
At + 1) =xBA' + y'B'A" + x’A + yA + AB; B(t + 1) = xA'B’

6-15.

6-16.

6-17.

6-18.
6-19.

6-20.

+x'A'B +y4'B

sequence: 000, 001, 010, 011,

101 - 001.

100 and repeat; 110 - 110, 111 - 111,

(¢) A flip-flop is complemented when all previous flip-flops are 0.

There are ten states with each state consisting of two 1’s in the five

bits.

000000, 100000, 010000, 101000, 110100, 011010, 101101

1000, 0100, 0010, 0001

0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001, 0000, and repeat.
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Chapter 7
7-1. Next
Present State | Output
State 01 01
a f b 00
b d a 00
d g a 10
f f b 11
g g d 01
7-2. State: a f bcedghgghoa
Input: 01110010011
Output: 01000111010
7-3. State: a f babdgdgygda
Input: 01110010011
Output: 01000111010
7-5. J K | o+ 1) o) ou+ | 7K
00 0 0 0 0 X
01 o) 0 1 1 X
10 Q') 1 0 Xo
1 1 1 1 1 X1
76. SD R | ot + 1) o(t) o+ 1) I SD R
0 O o) 0 0 0 X
0 1 0 0 1 | . ¢
1 0 1 1 0 0 1
! : ! ! ! i( ?\,} either

7-12.

(@) TA=A4+B'x;TB=A4+ BCx + BCx' + B'C'x';
TC = Ax + Cx + A'B'C'x’
(b) SA =A'B'x, RA=A4;SB=A + Cx'; RB=BCx + Cx';
SC=A4'B'x" + Ax: RC = A'x
(c) JA=Bx, KA=1,JB=A4+ Cx', KB=Cx + Cx';
JC = A'B'x" + Ax, KC=x;y = A'x
(4=2,B=2"Cc=2",D=2%,T4d =D+ C+B)x;
TB=(D + Cx; TC=Dx; TD = 0

.(a) A@ +1)=AB'C'x' + A'BC'x + A'BCx + AB'C'x + AB'Cx

B(t+1)=A'BC'x" + A'B'Cx
Ct+1)=A4B'Cx' + A'BC'x' + A'BCx" + AB'C'x' + AB'Cx'
d(4, B, C, x) = £ (0, 1, 12, 13, 14, 15) don’t-care terms.

TF; = (F; ® F; _ )L + (F; ® F; , {)R; L = 1 for left shift, R =

435

1

for right shift. F; is a flip-flop in stage i; F; _ | and F; , ; are the

flip-flops on its left and right, respectively.
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' »»wrro—

7-14.J4 = x, KA = x'; JB = Ax', KB =1, JC = Bx + Ax, KC = Bx'
7-17.84 = B, RA = B'; SB=A4'B' + B'x', RB = AB + Bx

7-18. DA = A'B'C + ACD + AC'D' DC = B
DB =A4'C+ CcD + A'B DD = D'
7-19.J4 = yC + xy JB = xAC JC =x'B + yAB'

KA =x"+y'B KB=AC+x'C+yC KC=AB +xB+y'B
7-20. JOg = 010204 JQ4 = 0,0, JQ, = 030, Jo, =1

KQg = O, KQ4= 0102 KQ, = 0, KQ, =1
[2 4 21

72114 B C D] ;TA =BCD + A'B; TB=CD + A'B, TC=D + A'B;
D = 1

7-22. For straight binary 0000 to 1011 and variables 4 B C D
TA = ACD + BCD; TB = A'CD; TC = D; TD =
3 = A'B'CD; tg = BCD'; tg = AC'D; t,, = A'B'C'D'
7-23.(@) JA =B KA=1,JB=A,KB=1;tg =AB, t; =B, t, =4
(b) JA=BC JB=C JC=A";ty=ABC, t, =BC t, = BC
KA =1, KB=C KC=1;13 =BC t4 = A
(c) JA=BC,JB=C JC=B +4';ty=A4B'C, t, = A'B'C
KA =B KB=A+C KC=1; t, = ABC, t; = BC,
tqy = AB'C, ts = AC, t¢ = AB
7-24.84 =BC' SB =BC SC =8
RA =BC RB=AB RC =B
725.TA =4 ®B; TB=B®C; TC=4 O C
726.JA4 =B JB =4+C JC =A'B
KA=1 KB=1 KC=1

Chapter 8

8-2. (a) 7680
(b) 32
(¢c) no external lines

8-3. A shift-register with input x and output y.

8-4. (a) 011, 001, 001, 100, 011, 011, 001, O11
(b) 011, 001, 100, 011, 001, 100, 011

8-5. (Aj.8) = Bg.16> (B1.3) = 49,16
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8-6.

8-7.

8-9.

8-10.

8-16.

Address of operand 1 = D
(<D>) = B
(B) = R,
Address of operand 2 = D
(<D>) = B
(B) = R,
(Ry) + (R2) @ Rj
address of sum = D
(R3) = B
(B) = <D>

P: (x)y =4

Sp: UR) @ A;, (Ap=>4;_,, i=1,2,3
SL: (]L) =>A0, (At):Al+ 1» i=0, 1,2
(a) 16
(b) 8, 16
(c) 16
(d) 16 + 255k, where k is the number of 1’s in the word to be
stored
(@) 5
(b) 18 if BCD is used
(c) (1) binary 75 = D (2) binary 75 = D
read: (<D>) = B read: (KD>) = B, 0=<D>
binary 90 = D (B) = <D>
write: (B) = <D> binary 90 = D
write: 0 = <D>

(B) = <D>

(a) The coefficient with the smaller exponent is shifted right a number
of times equal to the difference of the two exponents.

(b) The exponent of the sum is equal to the larger exponent.

(c) Shift the coefficient and adjust exponent until the most significant
digit of the coefficient is non-zero.

8-17. (a) (1 - 2726)- 2255 4nq 27 25¢

(b) (235 _ l) . 22047 and 2—2013

Chapter 9

9-1. (a) 84538,8; = 1100; CsC4C3C,C; = 01110

(b) Add command and one CP

(¢) (4) =1100, 4 _; = 0011, C5 _ ; = 11000
9-2. Same as Fig. 9-3 with J and K inputs connected together.
9-4. SA; = AJBC; + AjB;C;, RA; = A;BiC; + A;B;C}, carry is the same as

in a FA.
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9-5. (a) Substitute FS for FA in Fig. 9-1; for (b) and (c) use Figs. 9-3.
and 9-6 with output D being the same as S and borrow K
implemented as:

(b) K; .1 =AB; + AK; + BK;

9-6. ADD
A —eg X;
|>° B; X;Bi+ X;C; +B;C; — Ci+ 1
SUB C: Carry or
! Borrow
A;—]
B; A; ® B; ® C; —— Sum or Difference
C;
9-7. (a) A =0101, C = 0110

(b) 4 =0010, C =0111
(c) 4 =1100, C=1111

9-8. Cl = A6BG + ASAéBS + ASBSBG + A4A5AsB4 + A4AéB4Bs
+ A4A5B4B6 + A4B43536 + C4(A4 + B,) (A5 + Bs)
(4 + Bg). Twelve gates; two levels delay from C, to Cy.
9-9. 1600 nsec + 50 nsec for AND gate in the input of the last flip-flop.
9-11.8; =(A;+ B; + C;) (4] + B; + C}) (4; + B} + C}) (4; + B; + C})
TC; = (A4; + C)) (4; + By) (B] + C})
9-12. Maximum frequency = 100,000 pulses per second; 240 usec
9-13.

Shift Register A

setto 1

9-14. 240 nsec delay.
9-16. () TA; = (B,Cj + BiC)) py + Ajpy + p3 + A;Bips + ABps
+ Bip6 + (Al + 1 @Ai)p7 + (Al -1 @Ai)pg + El
(b)  S4; = (4;B,C; + AB,C)p; + Ajps + Bps + ABps + A; + 1p1
+ Al - 1Ps8 + A;El
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9-17.

9-19.

9-20.

9-23.

9-24.

9-26.

RA; = (ABIC; + AB,C)Ip1 + P2 + Aps + Bipa + A;B;ps
+Aj 1Pt Af 1pg + AE,
for both (a) and (b):
C; 1 =AB; +A,C; +BCi; E; , | = EA; Ey = pg; € =0
JA; = E; + (B;®K))a,; KA; = E; + (B; ®Ka, + Bas
borrow: K; 4 | = AjB; + AjK; + BK;; K1 = 05 E; 4 1 = A{E;
E, =q
(b) If the signs of augend and addend are the same and the sign of the
sum is different, an overflow occurs.
(a) inputs: ABxyz; outputs: S, Cq, Cs;
C, = ABy'z' + AB'x'z + AB'xy’ + A'Byz’ + A'Bxy’ + A'B'xy
+ Bx'y'z + Ax'yz' + A'x'yz + B'xyz';
C, = ABxy + ABxz + Bxyz + Axyz + AByz.

X =B ) +B)=>A4,(Cpy) =L
0=4 L:(4)+1=4
Z =B
4) +B)= 4 (E):B
Y=5B 4) +(B) = A, (Cyyp = L
(B) = B L:(4)+1 =>4
Compare sign bits: if unequal, the one with a 0 (positive) is the greater

number. If both sign bits are 0, refer to Sec. 4-6 for algorithm. If both
sign bits are 1, modify algorithm of Sec. 4-6 accordingly.

Use De Morgan’s theorem: AB' = (4’ + B)
A)=4

4)ve =>4

A)= 4

Chapter 10

10-1.

10-2.

(a 6

(b) 12

() 6,2,1

(d) needs one fetch cycle for each two instructions.

(a) (R1)+ (R2)=>R2
(b) listed in Sec. 10-2
(¢) add (KM;>) to (R1) and store sum in <M,>:
fM,1) =D
(<p>)=18
(B) = <D>, (R1) + (B) = R1
{m;1) =D, (R1) =B
0=><D>
(B) > <D>
(d) {[M]) + (R1) = R1
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10-3

10-5.

10-6.

10-10.

10-12.

ANSWERS TO SELECTED PROBLEMS

¢8)

(2)

3

(4)

(5

750
751
752
753
754
755
756
757
758
759
760

(a)
(b)
()
(d)

Processor:

Clear
Load
Add
Store
Load
Add
Add
Store

“Stop”
Input 750
16, 25
9
512
t 16, 777, 215
Processor: Y Y ENQ
Terminal: Y Y ACK
SOHY YSTX X X X...... X ETX EOT
Terminal: Y Y ACK
0101 0000000000
A 1100 0000010000
B 0001 0000010001
SUM 1101 0000010010
DIF 1100 0000010011
C 0001 0000010100
SUM 0001 0000010010
SUM 1101 0000010010

(P) + (4) =>4

Jm]) = D, (4) = B

(B) = <D>

if (4) > 0: (I[M])=>C
if(4)<0: (O)+1=>CcC
if (4) = 0: nothing

{m1) = b
(<D>) =B
(B)+1=1B
(B) = <D>
(IM])=D
(<D>) =B
(B) = A4,(4) =B
(B) = <D>
M}y = D
(<D>)=>B

ifB)y=0 (O+1=C
if(By#0: ®BY+1=>18

(B) » <D>
Input 0
Load 750
Increment
Store 750
Complement
Increment
Add 760

Branch on zero

759

Branch unconditional 750

Appendix
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Assuming that operands 4, B, SUM, DIF, and C are in memory
registers in location 16, 17, 18, 19, and 20, respectively.

10-19. Instruction format: ]Op. ld I X [AL[
Assume nondestructive read memory.
Condition Elementary Operation
[x}) = o: (I[M]) =D no index
(I[X]) = n: (I[M]) + (Xn) =D add index number
I{d]) = 0: (<D>)=B direct; read operand
[dl) = 1: (<D>)=B indirect; read address
(BIM}) = D transfer address
(<D>) =B read operand
Continue to execute instruction with operand in B register.
Chapter 11
11-3.  (4) = 0, (<103>) = 5101 (BUN 101)
11-5. (a) nothing
(b) two or more operations will be executed simultaneously with a
probable error in content of accumulator.
11-7.  JA; = Cjpy + (B; + C;)p2 KA4; = Cip,
! ! !
JB, = Alpl KBI = Atpl + (Al + C,)pg,
JCI = Bl-pl + (Al ® Bf)p4 KCI = Bipl + (Al ® B,)p4
11-10. (a) Ftq: By _12)=D, m
Fq,ty: (4) + (B) = A, carty = E
Fg,t3E: (A)+1=>A4,0=F
(b) To perform the addition during #,, it is necessary that the carry
propagate in less than 200 nsec. Therefore, carry look-ahead
circuits are needed.
(¢) 1I’'s complement representation generates either positive zero
(all 0’s) or negative zero (all 1’s). Additional circuits are needed
to detect a negative zero.
11-13. (@) @) - (<K<M>)=> 4

Fetch: (RF = 00)

R'F'ty: (O)=D, m
R'F'ty: ©+1=cC
R'F't,: (B3 - 16) =1
R’F,q8t3: 1=>F

read operand: (F = 1)

Ftol (Bl — 12) =>D, m
Fty: 0=>F

qsFty: 1=R
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11-13. execute. (R = 1)
qsRty: (B) = B
qgRt;: B)+1=8B
qgRt;5: A)+(B)=A4,0=>R
(b) qotzzy: By -1 =C
© @@+ KM>)=<MmM>
Fetch: same as in (a)
read operand and add: (F = 1)
Fl’oi (Bl _ 12) =D m
qqFty: A4+ B)=4,1=R
Fts: 0=F
store in <M>: (R = 1)
qqRty: m
QAszl (A) = B
qqRt3: 0=R
11-15. Fetch: same as Prob. 11-13(a)
read operand and add: (F = 1)
Fty: B1-12)=D, m
agFty: (4) =B, (B)= 4 swap and store (4)
qpFts: A)y+B)=4,1=>R sum in A register
Ft3: 0= F
swap (A) and (KM>): (R = 1)
qpRty: m memory cycle
qpRt;: (A) > B, (B)=> A4 swap to store sum and
restore (A4)
qgRt;: 0=R go to fetch cycle
Chapter 12
12-4. Each decimal digit position needs: four flip-flops in the accumulator,
four flip-flops for the addend digit, and one BCD adder.
12-5. (a)  Assume that either p, or p, may be an initial state. There are six

possible state sequences that start from an initial state and return

to an initial state.

(b) po = F3F3F1, py = FyF,, py = FoFY, py = FyF,, ps =F4

TFy = pox + p1x'y + pyz + ps
TF, = pox' + pixy + p3
TFy = p,x'y +p3 + p,

(c) DF,
DF,

]

1]

F4, DF| = y'F, + xFo, DF, = z'F, + x'F,,
xyFy + zF,, DF, = F3 + x'yF,.
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12-6.

12-7.

12-9.

12-11.

12-12.

12-24.
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(a) xyz = 000
(b) Fy =1 informs input device that the system is ready to
accept a word.
x =1 input device informs the system that a word is
available in terminals J.
F, is used to count two clock pulses before transfer
of word.
Fy =1 when register 4 has a word; F3 = O when register 4
is cleared.
Fqs =1 when register B has a word; F4 = 0 when register B
is cleared.
y =1 output device informs system that a word has been
accepted.
Perform the conversion with a combinational circuit (Sec. 4-5) and

connect the control signals directly; i.e., w to y and z to x.
(@) TFy =pos +po =F, + F, + Fy + sF1FyF}
TF, =p; + paAy + p3 + pa + ps + pq = Fy + FoF;3
+ FyF3A,
TF3 = p,Ay + p3 + py = F\F, + FyF34,

carry out carry in
of sign-bit sign-bit
position position overflow
0 0 no
0 1 yes
1 0 yes
1 1 no

Maximum number is (#* - 1); it is necessary to show that the maximum
product is less than (r2% - 1),
- Et-D=E" -2+ D<E"T -1

example: r =10, n = 2, 102 -1 =99
99 X 99 = 9801 = 10* - 2 X 10% + 1 < 9999
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Carry propagation 276-77
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Characteristic equation 170

Characteristic table 170, 207

Circuit design 365
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Clear 169, 286
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Clock generator 357

Clock pulses 167
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Code conversion 97, 406-07
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design of 89-90
Command signal (see Control signals)
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Communication processor 322-23,
326-29
Commutative law 34
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Comparison 301
Complement 10-11, 35, 258
of flip-flop 287
of a function 45-46
subtraction with 12-14
Compiler 311, 332
Computer 3,322
bootstrap 322, 382
design 355
general purpose 310, 322
instructions 317, 332, 362
organization 310, 314-20
physical structure 314-16
registers 315-16, 359-61
Conditional branch 338-39
Conjunctive form (see Product of sums)
Console 358, 382
Control function 242-44, 371
Control information 257, 391
Control logic 370, 378-79, 384
design 391, 394-99, 413-14
Control memory 330-31
Control register 395-98, 420
assignment 396-97
design 405, 414
Control sequence 369, 396
Control signals 283-84, 368-70
Control unit 368-70
Control word 324
Count pulses 185
Count sequence 228
Counter 185-86
asynchronous 187-88
binary 186, 188-90
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decimal 190-92, 228-29
with decoder 229

design of 227-33

ring 199

ripple 187

synchronous 188, 227-29

D

Data 257,314
communication 323, 326-29
fetch 344
format 362-63
Decade counter 192
Decimal adder 391
Decimal to binary conversion 6-8
Decimal codes 16-18

BCD 16-17
excess-3, 18
2,4,2,1 18

weighted 17
Decimal numbers 4
representation 258-60
Decoders 108
BCD to decimal 111-12
binary to octal 109
Degenerate forms 149, 163
De Morgan theorem 39-40, 45-46
Demultiplexer 113, 240
Destructive read-out 249, 256
Digital computer 1-4, 322-23
Digital logic 122
Digital systems 1-4
Discrete information 1-2
Disjunctive form (see Sum of products)
Distributive law 34
Don’t care conditions 72
analysis with 107-108
design with 98
simplification with 72-74
Double precision 263
Dual of a function 38, 46
Duality principle 38

E

EBCDIC 21
Elementary operation 241, 283-84

Encoder 108-10
End around carry 13
End carry 13, 299
Equivalence 53
Equivalence gate 123
Equivalence functions
Equivalent states 203
Error detection 18, 157
Essential prime implicant 80-81
Excess-3 code 18,97

adder 421
Excitation table 206-08

of circuit 211-15

of flip-flop 206-08
Exclusive-or 53
Exclusive-or gate 123
Exclusive-or functions 154-57
Execute cycle 318,371

154-57

F

FA (see Full-adder)

Fan-in 128

Fan-out 129

Feedback 103, 166
shift-register 199

Fetch cycle 318,371

Field 34

Fixed-point position 257

Flag 324

Flip-flop 167
basic circuit 167-68
D 171, 209
characteristic equation of 170
characteristic table 170, 207
clocked 169-70
excitation table 206-08 |
input functions 184-85 |
JK 172,209
master-slave 177-78
RS 169,208
RST 234
T 173,209
triggering of 174

Floating point representation 260-63
coefficient 260



exponent 260-62

biased 261-62

normalized 262

arithmetic operations with 262-63
Flow chart 399, 403,411-12, 419
FORTRAN 310, 332
Full-adder 92-95, 270
Full-subtractor 96-97

G

Gate 29-30,123
implementation 120
Gray code (see Reflected code)

Half-adder 90-92
Half-subtractor 95-96
Hardware 33, 355
Hexadecimal 5,9
Huntington postulates 35-36
Hybrid computer 3
Hysteresis loop 253

IC (see Integrated circuit)
Identity element 34
Implication 53
Increment 290-92
Index register 347-49
Indirect address 344-46
Inhibition 53, 160
Input functions 184-85
Input equations 184
Input-Output 323, 359
register 315,361
transfer 325
I/O (see Input-output)
Instructions 257,311-14
address part of 311-13
arithmetic 334-35
binary 317, 334

INDEX

to branch 317, 337-41, 367
to subroutine 340-41, 366
classes of 332
code 257,311,317
execution of 318-20,371-~75
format of 312, 363
input-output 317, 363-68
inter-register transfer 336-37
logical 335
memory reference 363-66
operational 333-36
operation part of 311
register name 315, 361
register reference 363-67
sequence of 318, 338
skip type 339, 365,367
unary 317,334
Integrated circuit 120, 127, 160, 251,
355
LSI 120-21, 296
MSI 120-21, 160, 192, 195, 296
packaging of 121
Inter-register transfer 238
Interrupt 325-26
Inverter 29

J

Jump (see Branch)

K

Karnaugh map (see Map)

L

Leading edge 175-76
Literal 45

Loading 129

Logical word 264

Logic design 257,390
Logic diagram 44, 89-91
Logic gate 29, 122
Logic levels 70, 128
Logic-1 28
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Logic-0 28 Micro-operation 241, 330

LSI 120-21,296 MSI 120-21,160,192, 195, 296
Multilevel 98, 128
Multiplexer 113, 240

M as a universal logic element 115-16
Multiplicand 6, 418
Multiplication 6, 334,416-17

Machine instructions 362 Multiplier 6,418

Machine language 310 design of 417-20

Magnetic core 249, 253-54

Majority gate 160

Mantissa (see Coefficient)

Map 58-59 N
method of simplification 58-68
Masking 303 NAND 53
Master-slave flip-flop 177-78 NAND gate 123
Maxterms 47 NAND logic 129
product of 50 analysis 138-48
Mealy machine 181 implementation of 131-38
Memory NAND/AND form 151
access mode of 250-51 Nanosecond 277
access time of 250-51 Negative logic 124
magnetic core 253-56 Next-state 170, 180-81
random-access 250 Nondegenerate forms 149
read 246 NOR 53,
read only 330, 384 NOR gate 123
reference instructions 363-64 NOR logic 143
semiconductor IC 252 analysis 146-48
sequential access to 250 implementation of 144-46
volatile 251 NOR/OR form 151
write 246 NOT 26,37
Memory cycle control signal 358, NOT gate 29
368-69 Nsec (see Nanosecond)
Memory cycle time 250 ' Number base conversion 6-9
steal 325 of fractions 7-8
Memory element 165-66 of integers 6-7
Memory registers 244, 246, 247, 315,
359

Memory unit 244-57, 315-16, 358 0
Memory word 245
Microprogramming 330-32, 384

Minimization (see Simplification) Octal 5,9

Minterms 47 Operation code 311
sum of 49 OR 26, 37

Minuend 6 logical 288

Mode bit 344 OR gate 29

Modem 327 OR/NAND form 151

Moore Machine 181 Overflow 271, 307, 423



P

Parallel adder 270
Parallel transfer 238
Parity bit 18, 157
Parity check 157
Parity generator 157
Partitioning 271, 285, 304
Peripheral processor 323-25, 383
Poll-select 328
Positive logic 124
Postulates 33-36
Present-state 170, 180-81
Prime implicants 74, 80
determination of 74-79
essential 80-81
table of 81
selection of 80-81
Product of maxterms 50
Product of sums 52
implementation 70
simplification 68-71
Program 1,310,314
examples 320, 349
interrupt 325
Propagation delay 128, 276

1]

Quine-McClusky method (see
Tabulation method)

R

Radix (see Base of a number)

Random-access 250

Read-only memory 330, 384

Reflected code 19

Register 22, 237, 241
accumulator 283-96, 316, 360
address 246, 315, 359
base 349
buffer 247, 315,359
computer 315, 359
content of 22-23, 242
control 395-98, 420

INDEX

Relative address 346-49
Ring counter 199
data representation in 257
index 347-48
input-output 315, 361
instructionsin 315-61
memory 244
multipurpose 269, 283
operational 241-44
operations in 241-42, 375
program control 315, 360
sequence 361
shift 192-95
storage 244
transfer 242, 318, 384-85
symbolic notation 242-44

S

Selective clear 303
Selective complement 302
Selective set 302
Sequence register 361
Sequential circuits 165-67
analysis of 178-84
asynchronous 166
clocked 167,200
design of 200-15
design examples of 216-27
excitation table of 211-15
design with 216
state assignment 205-06, 216, 231
state diagram 181-82
state equations 182-84
design with 224-27, 234-35
state reduction 201-05
state sequence 202
state table 179-81
synchronous 166-67
Serial adder 279-81
Serial-parallel comparison 282-83
Serial transfer 238, 243
Set of elements 33
Setting flip-flop 169, 286
Set-state 168
Shift 288-90
arithmetic 302
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circular 302, 365
logical 302
Shift register 192, 279
Shifting operations 301-02
Sign 257
Sign-complement 258-59, 300
Sign-magnitude 258-59, 408
Signal propagation 276
Simplification 45, 57-83
algebraic, 45
by map method, 57
by tabulation method, 76
Simplification criteria, 126
Software 333, 355
Standard form 52
Start-stop 361, 370, 382
State(s) 22,165
equivalent 203
number assignment 205-06, 216, 231
reducing 201-04
State diagram 181-82
State equation 182-84
State table 179-81, 203
Storage (see Memory)
Subroutine branch 340-41, 366
Subtraction 6, 299-301
sign-complement 258-59, 300
sign-magnitude 258-59, 4G8-10
Subtractor 95-97
Subtrahend 6
Sum of minterms 49
Sum of products 52
implementation 69-70
simplification 58-68
Switching algebra 38
Switching circuits 27
Switching function (see Boolean functio
Switching theory 126, 200-01
Symbolic notation 242, 284
System design 355

Tag 344

Tabulation method 74-81
Teletype 359, 362

Timing diagram 29,.175, 369, 398
Timing sequence 369, 396
Timing signals 230, 368-69
Trailing edge 175-77
Transistor 120, 126
Triggering flip-flop 174
Truth table 27, 40, 89
Two-level form 149

Unconditional branch 317

v

Variable 45, 88
Veitch diagram (see Map)
Venn diagram 41

w

Weighted code 17
Wired-AND 149
Wired-OR 149
Words 245

Word machine 342
Word mode 341
Word time 282
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